| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upfval.b | 
							 |-  B = ( Base ` D )  | 
						
						
							| 2 | 
							
								
							 | 
							upfval.c | 
							 |-  C = ( Base ` E )  | 
						
						
							| 3 | 
							
								
							 | 
							upfval.h | 
							 |-  H = ( Hom ` D )  | 
						
						
							| 4 | 
							
								
							 | 
							upfval.j | 
							 |-  J = ( Hom ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							upfval.o | 
							 |-  O = ( comp ` E )  | 
						
						
							| 6 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( d = D /\ e = E ) -> ( Base ` d ) e. _V )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							 |-  ( d = D -> ( Base ` d ) = ( Base ` D ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( d = D /\ e = E ) -> ( Base ` d ) = ( Base ` D ) )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							eqtr4di | 
							 |-  ( ( d = D /\ e = E ) -> ( Base ` d ) = B )  | 
						
						
							| 10 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) e. _V )  | 
						
						
							| 11 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( d = D /\ e = E ) /\ b = B ) -> e = E )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							 |-  ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = ( Base ` E ) )  | 
						
						
							| 13 | 
							
								12 2
							 | 
							eqtr4di | 
							 |-  ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = C )  | 
						
						
							| 14 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) e. _V )  | 
						
						
							| 15 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> d = D )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = ( Hom ` D ) )  | 
						
						
							| 17 | 
							
								16 3
							 | 
							eqtr4di | 
							 |-  ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = H )  | 
						
						
							| 18 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) e. _V )  | 
						
						
							| 19 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> e = E )  | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = ( Hom ` E ) )  | 
						
						
							| 21 | 
							
								20 4
							 | 
							eqtr4di | 
							 |-  ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = J )  | 
						
						
							| 22 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) e. _V )  | 
						
						
							| 23 | 
							
								
							 | 
							simp-5r | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> e = E )  | 
						
						
							| 24 | 
							
								23
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = ( comp ` E ) )  | 
						
						
							| 25 | 
							
								24 5
							 | 
							eqtr4di | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = O )  | 
						
						
							| 26 | 
							
								
							 | 
							simp-6l | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> d = D )  | 
						
						
							| 27 | 
							
								
							 | 
							simp-6r | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> e = E )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( d Func e ) = ( D Func E ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> c = C )  | 
						
						
							| 30 | 
							
								
							 | 
							simp-5r | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> b = B )  | 
						
						
							| 31 | 
							
								30
							 | 
							eleq2d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x e. b <-> x e. B ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> j = J )  | 
						
						
							| 33 | 
							
								32
							 | 
							oveqd | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` f ) ` x ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							eleq2d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( m e. ( w j ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` f ) ` x ) ) ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							anbi12d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) ) )  | 
						
						
							| 36 | 
							
								32
							 | 
							oveqd | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` f ) ` y ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> h = H )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveqdr | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x h y ) = ( x H y ) )  | 
						
						
							| 39 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> o = O )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveqd | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveqd | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							eqeq2d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							reueqbidv | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) )  | 
						
						
							| 44 | 
							
								36 43
							 | 
							raleqbidv | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) )  | 
						
						
							| 45 | 
							
								30 44
							 | 
							raleqbidv | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) )  | 
						
						
							| 46 | 
							
								35 45
							 | 
							anbi12d | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							opabbidv | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
						
							| 48 | 
							
								28 29 47
							 | 
							mpoeq123dv | 
							 |-  ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 49 | 
							
								22 25 48
							 | 
							csbied2 | 
							 |-  ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 50 | 
							
								18 21 49
							 | 
							csbied2 | 
							 |-  ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 51 | 
							
								14 17 50
							 | 
							csbied2 | 
							 |-  ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 52 | 
							
								10 13 51
							 | 
							csbied2 | 
							 |-  ( ( ( d = D /\ e = E ) /\ b = B ) -> [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 53 | 
							
								6 9 52
							 | 
							csbied2 | 
							 |-  ( ( d = D /\ e = E ) -> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 54 | 
							
								
							 | 
							df-up | 
							 |-  UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 55 | 
							
								
							 | 
							ovex | 
							 |-  ( D Func E ) e. _V  | 
						
						
							| 56 | 
							
								2
							 | 
							fvexi | 
							 |-  C e. _V  | 
						
						
							| 57 | 
							
								55 56
							 | 
							mpoex | 
							 |-  ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) e. _V | 
						
						
							| 58 | 
							
								53 54 57
							 | 
							ovmpoa | 
							 |-  ( ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 59 | 
							
								54
							 | 
							reldmmpo | 
							 |-  Rel dom UP  | 
						
						
							| 60 | 
							
								59
							 | 
							ovprc | 
							 |-  ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = (/) )  | 
						
						
							| 61 | 
							
								
							 | 
							df-func | 
							 |-  Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) | 
						
						
							| 62 | 
							
								61
							 | 
							reldmmpo | 
							 |-  Rel dom Func  | 
						
						
							| 63 | 
							
								62
							 | 
							ovprc | 
							 |-  ( -. ( D e. _V /\ E e. _V ) -> ( D Func E ) = (/) )  | 
						
						
							| 64 | 
							
								63
							 | 
							orcd | 
							 |-  ( -. ( D e. _V /\ E e. _V ) -> ( ( D Func E ) = (/) \/ C = (/) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							0mpo0 | 
							 |-  ( ( ( D Func E ) = (/) \/ C = (/) ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) | 
						
						
							| 66 | 
							
								64 65
							 | 
							syl | 
							 |-  ( -. ( D e. _V /\ E e. _V ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) | 
						
						
							| 67 | 
							
								60 66
							 | 
							eqtr4d | 
							 |-  ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
						
							| 68 | 
							
								58 67
							 | 
							pm2.61i | 
							 |-  ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |