Step |
Hyp |
Ref |
Expression |
1 |
|
upfval.b |
|- B = ( Base ` D ) |
2 |
|
upfval.c |
|- C = ( Base ` E ) |
3 |
|
upfval.h |
|- H = ( Hom ` D ) |
4 |
|
upfval.j |
|- J = ( Hom ` E ) |
5 |
|
upfval.o |
|- O = ( comp ` E ) |
6 |
|
fvexd |
|- ( ( d = D /\ e = E ) -> ( Base ` d ) e. _V ) |
7 |
|
fveq2 |
|- ( d = D -> ( Base ` d ) = ( Base ` D ) ) |
8 |
7
|
adantr |
|- ( ( d = D /\ e = E ) -> ( Base ` d ) = ( Base ` D ) ) |
9 |
8 1
|
eqtr4di |
|- ( ( d = D /\ e = E ) -> ( Base ` d ) = B ) |
10 |
|
fvexd |
|- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) e. _V ) |
11 |
|
simplr |
|- ( ( ( d = D /\ e = E ) /\ b = B ) -> e = E ) |
12 |
11
|
fveq2d |
|- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = ( Base ` E ) ) |
13 |
12 2
|
eqtr4di |
|- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = C ) |
14 |
|
fvexd |
|- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) e. _V ) |
15 |
|
simplll |
|- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> d = D ) |
16 |
15
|
fveq2d |
|- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = ( Hom ` D ) ) |
17 |
16 3
|
eqtr4di |
|- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = H ) |
18 |
|
fvexd |
|- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) e. _V ) |
19 |
|
simp-4r |
|- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> e = E ) |
20 |
19
|
fveq2d |
|- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = ( Hom ` E ) ) |
21 |
20 4
|
eqtr4di |
|- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = J ) |
22 |
|
fvexd |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) e. _V ) |
23 |
|
simp-5r |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> e = E ) |
24 |
23
|
fveq2d |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = ( comp ` E ) ) |
25 |
24 5
|
eqtr4di |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = O ) |
26 |
|
simp-6l |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> d = D ) |
27 |
|
simp-6r |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> e = E ) |
28 |
26 27
|
oveq12d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( d Func e ) = ( D Func E ) ) |
29 |
|
simp-4r |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> c = C ) |
30 |
|
simp-5r |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> b = B ) |
31 |
30
|
eleq2d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x e. b <-> x e. B ) ) |
32 |
|
simplr |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> j = J ) |
33 |
32
|
oveqd |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` f ) ` x ) ) ) |
34 |
33
|
eleq2d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( m e. ( w j ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` f ) ` x ) ) ) ) |
35 |
31 34
|
anbi12d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) ) ) |
36 |
32
|
oveqd |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` f ) ` y ) ) ) |
37 |
|
simplr |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> h = H ) |
38 |
37
|
oveqdr |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x h y ) = ( x H y ) ) |
39 |
|
simpr |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> o = O ) |
40 |
39
|
oveqd |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) ) |
41 |
40
|
oveqd |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) |
42 |
41
|
eqeq2d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
43 |
38 42
|
reueqbidv |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
44 |
36 43
|
raleqbidv |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
45 |
30 44
|
raleqbidv |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
46 |
35 45
|
anbi12d |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
47 |
46
|
opabbidv |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |
48 |
28 29 47
|
mpoeq123dv |
|- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
49 |
22 25 48
|
csbied2 |
|- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
50 |
18 21 49
|
csbied2 |
|- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
51 |
14 17 50
|
csbied2 |
|- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
52 |
10 13 51
|
csbied2 |
|- ( ( ( d = D /\ e = E ) /\ b = B ) -> [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
53 |
6 9 52
|
csbied2 |
|- ( ( d = D /\ e = E ) -> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
54 |
|
df-up |
|- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
55 |
|
ovex |
|- ( D Func E ) e. _V |
56 |
2
|
fvexi |
|- C e. _V |
57 |
55 56
|
mpoex |
|- ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) e. _V |
58 |
53 54 57
|
ovmpoa |
|- ( ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
59 |
54
|
reldmmpo |
|- Rel dom UP |
60 |
59
|
ovprc |
|- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = (/) ) |
61 |
|
df-func |
|- Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) |
62 |
61
|
reldmmpo |
|- Rel dom Func |
63 |
62
|
ovprc |
|- ( -. ( D e. _V /\ E e. _V ) -> ( D Func E ) = (/) ) |
64 |
63
|
orcd |
|- ( -. ( D e. _V /\ E e. _V ) -> ( ( D Func E ) = (/) \/ C = (/) ) ) |
65 |
|
0mpo0 |
|- ( ( ( D Func E ) = (/) \/ C = (/) ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) |
66 |
64 65
|
syl |
|- ( -. ( D e. _V /\ E e. _V ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) |
67 |
60 66
|
eqtr4d |
|- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
68 |
58 67
|
pm2.61i |
|- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |