Description: Definition of the class of universal properties.
Given categories D and E , if F : D --> E is a functor and W an object of E , a universal pair from W to F is a pair <. X , M >. consisting of an object X of D and a morphism M : W --> F X of E , such that to every pair <. y , g >. with y an object of D and g : W --> F y a morphism of E , there is a unique morphism k : X --> y of D with F k .o. M = g . Such property is commonly referred to as a universal property. In our definition, it is denoted as X ( F ( D UP E ) W ) M .
Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism M instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981 . Alternatively, the universal pair is called the "universal morphism" in Wikipedia ( https://en.wikipedia.org/wiki/Universal_property ) as well as published works, e.g., https://arxiv.org/pdf/2412.12179 . But the pair <. X , M >. should be named differently as the morphism M , and thus we call X theuniversal object, M theuniversal morphism, and <. X , M >. theuniversal pair.
Given its existence, such universal pair is essentially unique ( upeu3 ), and can be generated from an existing universal pair by isomorphisms ( upeu4 ). See also oppcup for the dual concept.
(Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-up | |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cup | |- UP  | 
						|
| 1 | vd | |- d  | 
						|
| 2 | cvv | |- _V  | 
						|
| 3 | ve | |- e  | 
						|
| 4 | cbs | |- Base  | 
						|
| 5 | 1 | cv | |- d  | 
						
| 6 | 5 4 | cfv | |- ( Base ` d )  | 
						
| 7 | vb | |- b  | 
						|
| 8 | 3 | cv | |- e  | 
						
| 9 | 8 4 | cfv | |- ( Base ` e )  | 
						
| 10 | vc | |- c  | 
						|
| 11 | chom | |- Hom  | 
						|
| 12 | 5 11 | cfv | |- ( Hom ` d )  | 
						
| 13 | vh | |- h  | 
						|
| 14 | 8 11 | cfv | |- ( Hom ` e )  | 
						
| 15 | vj | |- j  | 
						|
| 16 | cco | |- comp  | 
						|
| 17 | 8 16 | cfv | |- ( comp ` e )  | 
						
| 18 | vo | |- o  | 
						|
| 19 | vf | |- f  | 
						|
| 20 | cfunc | |- Func  | 
						|
| 21 | 5 8 20 | co | |- ( d Func e )  | 
						
| 22 | vw | |- w  | 
						|
| 23 | 10 | cv | |- c  | 
						
| 24 | vx | |- x  | 
						|
| 25 | vm | |- m  | 
						|
| 26 | 24 | cv | |- x  | 
						
| 27 | 7 | cv | |- b  | 
						
| 28 | 26 27 | wcel | |- x e. b  | 
						
| 29 | 25 | cv | |- m  | 
						
| 30 | 22 | cv | |- w  | 
						
| 31 | 15 | cv | |- j  | 
						
| 32 | c1st | |- 1st  | 
						|
| 33 | 19 | cv | |- f  | 
						
| 34 | 33 32 | cfv | |- ( 1st ` f )  | 
						
| 35 | 26 34 | cfv | |- ( ( 1st ` f ) ` x )  | 
						
| 36 | 30 35 31 | co | |- ( w j ( ( 1st ` f ) ` x ) )  | 
						
| 37 | 29 36 | wcel | |- m e. ( w j ( ( 1st ` f ) ` x ) )  | 
						
| 38 | 28 37 | wa | |- ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) )  | 
						
| 39 | vy | |- y  | 
						|
| 40 | vg | |- g  | 
						|
| 41 | 39 | cv | |- y  | 
						
| 42 | 41 34 | cfv | |- ( ( 1st ` f ) ` y )  | 
						
| 43 | 30 42 31 | co | |- ( w j ( ( 1st ` f ) ` y ) )  | 
						
| 44 | vk | |- k  | 
						|
| 45 | 13 | cv | |- h  | 
						
| 46 | 26 41 45 | co | |- ( x h y )  | 
						
| 47 | 40 | cv | |- g  | 
						
| 48 | c2nd | |- 2nd  | 
						|
| 49 | 33 48 | cfv | |- ( 2nd ` f )  | 
						
| 50 | 26 41 49 | co | |- ( x ( 2nd ` f ) y )  | 
						
| 51 | 44 | cv | |- k  | 
						
| 52 | 51 50 | cfv | |- ( ( x ( 2nd ` f ) y ) ` k )  | 
						
| 53 | 30 35 | cop | |- <. w , ( ( 1st ` f ) ` x ) >.  | 
						
| 54 | 18 | cv | |- o  | 
						
| 55 | 53 42 54 | co | |- ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) )  | 
						
| 56 | 52 29 55 | co | |- ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m )  | 
						
| 57 | 47 56 | wceq | |- g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m )  | 
						
| 58 | 57 44 46 | wreu | |- E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m )  | 
						
| 59 | 58 40 43 | wral | |- A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m )  | 
						
| 60 | 59 39 27 | wral | |- A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m )  | 
						
| 61 | 38 60 | wa | |- ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) )  | 
						
| 62 | 61 24 25 | copab |  |-  { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } | 
						
| 63 | 19 22 21 23 62 | cmpo |  |-  ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 64 | 18 17 63 | csb |  |-  [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 65 | 15 14 64 | csb |  |-  [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 66 | 13 12 65 | csb |  |-  [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 67 | 10 9 66 | csb |  |-  [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 68 | 7 6 67 | csb |  |-  [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
| 69 | 1 3 2 2 68 | cmpo |  |-  ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) | 
						
| 70 | 0 69 | wceq |  |-  UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |