Description: Definition of the class of universal properties.
Given categories D and E , if F : D --> E is a functor and W an object of E , a universal pair from W to F is a pair <. X , M >. consisting of an object X of D and a morphism M : W --> F X of E , such that to every pair <. y , g >. with y an object of D and g : W --> F y a morphism of E , there is a unique morphism k : X --> y of D with F k .o. M = g . Such property is commonly referred to as a universal property. In our definition, it is denoted as X ( F ( D UP E ) W ) M .
Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism M instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981 . Alternatively, the universal pair is called the "universal morphism" in Wikipedia ( https://en.wikipedia.org/wiki/Universal_property ) as well as published works, e.g., https://arxiv.org/pdf/2412.12179 . But the pair <. X , M >. should be named differently as the morphism M , and thus we call X theuniversal object, M theuniversal morphism, and <. X , M >. theuniversal pair.
Given its existence, such universal pair is essentially unique ( upeu3 ), and can be generated from an existing universal pair by isomorphisms ( upeu4 ). See also oppcup for the dual concept.
(Contributed by Zhi Wang, 24-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-up | |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cup | |- UP |
|
1 | vd | |- d |
|
2 | cvv | |- _V |
|
3 | ve | |- e |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- d |
6 | 5 4 | cfv | |- ( Base ` d ) |
7 | vb | |- b |
|
8 | 3 | cv | |- e |
9 | 8 4 | cfv | |- ( Base ` e ) |
10 | vc | |- c |
|
11 | chom | |- Hom |
|
12 | 5 11 | cfv | |- ( Hom ` d ) |
13 | vh | |- h |
|
14 | 8 11 | cfv | |- ( Hom ` e ) |
15 | vj | |- j |
|
16 | cco | |- comp |
|
17 | 8 16 | cfv | |- ( comp ` e ) |
18 | vo | |- o |
|
19 | vf | |- f |
|
20 | cfunc | |- Func |
|
21 | 5 8 20 | co | |- ( d Func e ) |
22 | vw | |- w |
|
23 | 10 | cv | |- c |
24 | vx | |- x |
|
25 | vm | |- m |
|
26 | 24 | cv | |- x |
27 | 7 | cv | |- b |
28 | 26 27 | wcel | |- x e. b |
29 | 25 | cv | |- m |
30 | 22 | cv | |- w |
31 | 15 | cv | |- j |
32 | c1st | |- 1st |
|
33 | 19 | cv | |- f |
34 | 33 32 | cfv | |- ( 1st ` f ) |
35 | 26 34 | cfv | |- ( ( 1st ` f ) ` x ) |
36 | 30 35 31 | co | |- ( w j ( ( 1st ` f ) ` x ) ) |
37 | 29 36 | wcel | |- m e. ( w j ( ( 1st ` f ) ` x ) ) |
38 | 28 37 | wa | |- ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) |
39 | vy | |- y |
|
40 | vg | |- g |
|
41 | 39 | cv | |- y |
42 | 41 34 | cfv | |- ( ( 1st ` f ) ` y ) |
43 | 30 42 31 | co | |- ( w j ( ( 1st ` f ) ` y ) ) |
44 | vk | |- k |
|
45 | 13 | cv | |- h |
46 | 26 41 45 | co | |- ( x h y ) |
47 | 40 | cv | |- g |
48 | c2nd | |- 2nd |
|
49 | 33 48 | cfv | |- ( 2nd ` f ) |
50 | 26 41 49 | co | |- ( x ( 2nd ` f ) y ) |
51 | 44 | cv | |- k |
52 | 51 50 | cfv | |- ( ( x ( 2nd ` f ) y ) ` k ) |
53 | 30 35 | cop | |- <. w , ( ( 1st ` f ) ` x ) >. |
54 | 18 | cv | |- o |
55 | 53 42 54 | co | |- ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) |
56 | 52 29 55 | co | |- ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) |
57 | 47 56 | wceq | |- g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) |
58 | 57 44 46 | wreu | |- E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) |
59 | 58 40 43 | wral | |- A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) |
60 | 59 39 27 | wral | |- A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) |
61 | 38 60 | wa | |- ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) |
62 | 61 24 25 | copab | |- { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } |
63 | 19 22 21 23 62 | cmpo | |- ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
64 | 18 17 63 | csb | |- [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
65 | 15 14 64 | csb | |- [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
66 | 13 12 65 | csb | |- [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
67 | 10 9 66 | csb | |- [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
68 | 7 6 67 | csb | |- [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) |
69 | 1 3 2 2 68 | cmpo | |- ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
70 | 0 69 | wceq | |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |