| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upeu3.i | 
							 |-  ( ph -> I = ( Iso ` D ) )  | 
						
						
							| 2 | 
							
								
							 | 
							upeu3.o | 
							 |-  ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							upeu3.x | 
							 |-  ( ph -> X ( <. F , G >. ( D UP E ) W ) M )  | 
						
						
							| 4 | 
							
								
							 | 
							upeu4.k | 
							 |-  ( ph -> K e. ( X I Y ) )  | 
						
						
							| 5 | 
							
								
							 | 
							upeu4.n | 
							 |-  ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` E ) = ( Base ` E )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` E ) = ( Hom ` E )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` E ) = ( comp ` E )  | 
						
						
							| 11 | 
							
								3
							 | 
							uprcl2 | 
							 |-  ( ph -> F ( D Func E ) G )  | 
						
						
							| 12 | 
							
								3 6
							 | 
							uprcl4 | 
							 |-  ( ph -> X e. ( Base ` D ) )  | 
						
						
							| 13 | 
							
								11
							 | 
							funcrcl2 | 
							 |-  ( ph -> D e. Cat )  | 
						
						
							| 14 | 
							
								
							 | 
							isofn | 
							 |-  ( D e. Cat -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							 |-  ( ph -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) )  | 
						
						
							| 16 | 
							
								1
							 | 
							fneq1d | 
							 |-  ( ph -> ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							mpbird | 
							 |-  ( ph -> I Fn ( ( Base ` D ) X. ( Base ` D ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fnov | 
							 |-  ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylib | 
							 |-  ( ph -> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveqd | 
							 |-  ( ph -> ( X I Y ) = ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							eleqtrd | 
							 |-  ( ph -> K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							elmpocl2 | 
							 |-  ( K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) -> Y e. ( Base ` D ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							syl | 
							 |-  ( ph -> Y e. ( Base ` D ) )  | 
						
						
							| 25 | 
							
								3 7
							 | 
							uprcl3 | 
							 |-  ( ph -> W e. ( Base ` E ) )  | 
						
						
							| 26 | 
							
								3 9
							 | 
							uprcl5 | 
							 |-  ( ph -> M e. ( W ( Hom ` E ) ( F ` X ) ) )  | 
						
						
							| 27 | 
							
								6 8 9 10 3
							 | 
							isup2 | 
							 |-  ( ph -> A. x e. ( Base ` D ) A. f e. ( W ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` D ) x ) f = ( ( ( X G x ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( Iso ` D ) = ( Iso ` D )  | 
						
						
							| 29 | 
							
								1
							 | 
							oveqd | 
							 |-  ( ph -> ( X I Y ) = ( X ( Iso ` D ) Y ) )  | 
						
						
							| 30 | 
							
								4 29
							 | 
							eleqtrd | 
							 |-  ( ph -> K e. ( X ( Iso ` D ) Y ) )  | 
						
						
							| 31 | 
							
								2
							 | 
							oveqd | 
							 |-  ( ph -> ( ( ( X G Y ) ` K ) .o. M ) = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) )  | 
						
						
							| 32 | 
							
								5 31
							 | 
							eqtrd | 
							 |-  ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) )  | 
						
						
							| 33 | 
							
								6 7 8 9 10 11 12 24 25 26 27 28 30 32
							 | 
							upeu2 | 
							 |-  ( ph -> ( N e. ( W ( Hom ` E ) ( F ` Y ) ) /\ A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							simprd | 
							 |-  ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) )  | 
						
						
							| 35 | 
							
								33
							 | 
							simpld | 
							 |-  ( ph -> N e. ( W ( Hom ` E ) ( F ` Y ) ) )  | 
						
						
							| 36 | 
							
								6 7 8 9 10 25 11 24 35
							 | 
							isup | 
							 |-  ( ph -> ( Y ( <. F , G >. ( D UP E ) W ) N <-> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							mpbird | 
							 |-  ( ph -> Y ( <. F , G >. ( D UP E ) W ) N )  |