Metamath Proof Explorer


Theorem uptposlem

Description: Lemma for uptpos . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x
|- ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
uptpos.h
|- ( ph -> tpos G = H )
Assertion uptposlem
|- ( ph -> tpos H = G )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x
 |-  ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
2 uptpos.h
 |-  ( ph -> tpos G = H )
3 2 tposeqd
 |-  ( ph -> tpos tpos G = tpos H )
4 eqid
 |-  ( Base ` O ) = ( Base ` O )
5 1 uprcl2
 |-  ( ph -> F ( O Func P ) G )
6 4 5 funcfn2
 |-  ( ph -> G Fn ( ( Base ` O ) X. ( Base ` O ) ) )
7 fnrel
 |-  ( G Fn ( ( Base ` O ) X. ( Base ` O ) ) -> Rel G )
8 6 7 syl
 |-  ( ph -> Rel G )
9 relxp
 |-  Rel ( ( Base ` O ) X. ( Base ` O ) )
10 6 fndmd
 |-  ( ph -> dom G = ( ( Base ` O ) X. ( Base ` O ) ) )
11 10 releqd
 |-  ( ph -> ( Rel dom G <-> Rel ( ( Base ` O ) X. ( Base ` O ) ) ) )
12 9 11 mpbiri
 |-  ( ph -> Rel dom G )
13 tpostpos2
 |-  ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G )
14 8 12 13 syl2anc
 |-  ( ph -> tpos tpos G = G )
15 3 14 eqtr3d
 |-  ( ph -> tpos H = G )