Metamath Proof Explorer


Theorem uptpos

Description: Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x
|- ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
uptpos.h
|- ( ph -> tpos G = H )
Assertion uptpos
|- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x
 |-  ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
2 uptpos.h
 |-  ( ph -> tpos G = H )
3 1 2 uptposlem
 |-  ( ph -> tpos H = G )
4 3 opeq2d
 |-  ( ph -> <. F , tpos H >. = <. F , G >. )
5 4 oveq1d
 |-  ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) )
6 5 breqd
 |-  ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) )
7 1 6 mpbird
 |-  ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M )