Description: Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| uptpos.h | |- ( ph -> tpos G = H ) |
||
| Assertion | uptpos | |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| 2 | uptpos.h | |- ( ph -> tpos G = H ) |
|
| 3 | 1 2 | uptposlem | |- ( ph -> tpos H = G ) |
| 4 | 3 | opeq2d | |- ( ph -> <. F , tpos H >. = <. F , G >. ) |
| 5 | 4 | oveq1d | |- ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) ) |
| 6 | 5 | breqd | |- ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) ) |
| 7 | 1 6 | mpbird | |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) |