Metamath Proof Explorer


Theorem uptpos

Description: Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
uptpos.h ( 𝜑 → tpos 𝐺 = 𝐻 )
Assertion uptpos ( 𝜑𝑋 ( ⟨ 𝐹 , tpos 𝐻 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 uptpos.h ( 𝜑 → tpos 𝐺 = 𝐻 )
3 1 2 uptposlem ( 𝜑 → tpos 𝐻 = 𝐺 )
4 3 opeq2d ( 𝜑 → ⟨ 𝐹 , tpos 𝐻 ⟩ = ⟨ 𝐹 , 𝐺 ⟩ )
5 4 oveq1d ( 𝜑 → ( ⟨ 𝐹 , tpos 𝐻 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) = ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) )
6 5 breqd ( 𝜑 → ( 𝑋 ( ⟨ 𝐹 , tpos 𝐻 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) )
7 1 6 mpbird ( 𝜑𝑋 ( ⟨ 𝐹 , tpos 𝐻 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )