Metamath Proof Explorer


Theorem oppcuprcl4

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppcuprcl4.o 𝑂 = ( oppCat ‘ 𝐷 )
oppcuprcl4.b 𝐵 = ( Base ‘ 𝐷 )
Assertion oppcuprcl4 ( 𝜑𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 oppcuprcl4.o 𝑂 = ( oppCat ‘ 𝐷 )
3 oppcuprcl4.b 𝐵 = ( Base ‘ 𝐷 )
4 2 3 oppcbas 𝐵 = ( Base ‘ 𝑂 )
5 1 4 uprcl4 ( 𝜑𝑋𝐵 )