Metamath Proof Explorer


Theorem oppcuprcl3

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
oppcuprcl3.c 𝐶 = ( Base ‘ 𝐸 )
Assertion oppcuprcl3 ( 𝜑𝑊𝐶 )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
3 oppcuprcl3.c 𝐶 = ( Base ‘ 𝐸 )
4 2 3 oppcbas 𝐶 = ( Base ‘ 𝑃 )
5 1 4 uprcl3 ( 𝜑𝑊𝐶 )