Metamath Proof Explorer


Theorem oppcuprcl3

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
oppcuprcl2.p P = oppCat E
oppcuprcl3.c C = Base E
Assertion oppcuprcl3 φ W C

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
2 oppcuprcl2.p P = oppCat E
3 oppcuprcl3.c C = Base E
4 2 3 oppcbas C = Base P
5 1 4 uprcl3 φ W C