Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| oppcuprcl2.p | |- P = ( oppCat ` E ) |
||
| oppcuprcl3.c | |- C = ( Base ` E ) |
||
| Assertion | oppcuprcl3 | |- ( ph -> W e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| 2 | oppcuprcl2.p | |- P = ( oppCat ` E ) |
|
| 3 | oppcuprcl3.c | |- C = ( Base ` E ) |
|
| 4 | 2 3 | oppcbas | |- C = ( Base ` P ) |
| 5 | 1 4 | uprcl3 | |- ( ph -> W e. C ) |