Metamath Proof Explorer


Theorem oppcuprcl3

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x
|- ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
oppcuprcl2.p
|- P = ( oppCat ` E )
oppcuprcl3.c
|- C = ( Base ` E )
Assertion oppcuprcl3
|- ( ph -> W e. C )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x
 |-  ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
2 oppcuprcl2.p
 |-  P = ( oppCat ` E )
3 oppcuprcl3.c
 |-  C = ( Base ` E )
4 2 3 oppcbas
 |-  C = ( Base ` P )
5 1 4 uprcl3
 |-  ( ph -> W e. C )