Metamath Proof Explorer


Theorem oppcuprcl5

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x
|- ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
oppcuprcl2.p
|- P = ( oppCat ` E )
oppcuprcl5.j
|- J = ( Hom ` E )
Assertion oppcuprcl5
|- ( ph -> M e. ( ( F ` X ) J W ) )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x
 |-  ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
2 oppcuprcl2.p
 |-  P = ( oppCat ` E )
3 oppcuprcl5.j
 |-  J = ( Hom ` E )
4 eqid
 |-  ( Hom ` P ) = ( Hom ` P )
5 1 4 uprcl5
 |-  ( ph -> M e. ( W ( Hom ` P ) ( F ` X ) ) )
6 3 2 oppchom
 |-  ( W ( Hom ` P ) ( F ` X ) ) = ( ( F ` X ) J W )
7 5 6 eleqtrdi
 |-  ( ph -> M e. ( ( F ` X ) J W ) )