Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| oppcuprcl2.p | |- P = ( oppCat ` E ) |
||
| oppcuprcl2.o | |- O = ( oppCat ` D ) |
||
| oppcuprcl2.d | |- ( ph -> D e. U ) |
||
| oppcuprcl2.e | |- ( ph -> E e. V ) |
||
| oppcuprcl2.h | |- ( ph -> tpos G = H ) |
||
| Assertion | oppcuprcl2 | |- ( ph -> F ( D Func E ) H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| 2 | oppcuprcl2.p | |- P = ( oppCat ` E ) |
|
| 3 | oppcuprcl2.o | |- O = ( oppCat ` D ) |
|
| 4 | oppcuprcl2.d | |- ( ph -> D e. U ) |
|
| 5 | oppcuprcl2.e | |- ( ph -> E e. V ) |
|
| 6 | oppcuprcl2.h | |- ( ph -> tpos G = H ) |
|
| 7 | 1 | uprcl2 | |- ( ph -> F ( O Func P ) G ) |
| 8 | 3 2 4 5 7 | funcoppc2 | |- ( ph -> F ( D Func E ) tpos G ) |
| 9 | 8 6 | breqtrd | |- ( ph -> F ( D Func E ) H ) |