Metamath Proof Explorer


Theorem oppcuprcl2

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x
|- ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
oppcuprcl2.p
|- P = ( oppCat ` E )
oppcuprcl2.o
|- O = ( oppCat ` D )
oppcuprcl2.d
|- ( ph -> D e. U )
oppcuprcl2.e
|- ( ph -> E e. V )
oppcuprcl2.h
|- ( ph -> tpos G = H )
Assertion oppcuprcl2
|- ( ph -> F ( D Func E ) H )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x
 |-  ( ph -> X ( <. F , G >. ( O UP P ) W ) M )
2 oppcuprcl2.p
 |-  P = ( oppCat ` E )
3 oppcuprcl2.o
 |-  O = ( oppCat ` D )
4 oppcuprcl2.d
 |-  ( ph -> D e. U )
5 oppcuprcl2.e
 |-  ( ph -> E e. V )
6 oppcuprcl2.h
 |-  ( ph -> tpos G = H )
7 1 uprcl2
 |-  ( ph -> F ( O Func P ) G )
8 3 2 4 5 7 funcoppc2
 |-  ( ph -> F ( D Func E ) tpos G )
9 8 6 breqtrd
 |-  ( ph -> F ( D Func E ) H )