Metamath Proof Explorer


Theorem uprcl2a

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypothesis uprcl2a.x
|- ( ph -> X ( G ( O UP P ) W ) M )
Assertion uprcl2a
|- ( ph -> G e. ( O Func P ) )

Proof

Step Hyp Ref Expression
1 uprcl2a.x
 |-  ( ph -> X ( G ( O UP P ) W ) M )
2 df-br
 |-  ( X ( G ( O UP P ) W ) M <-> <. X , M >. e. ( G ( O UP P ) W ) )
3 1 2 sylib
 |-  ( ph -> <. X , M >. e. ( G ( O UP P ) W ) )
4 eqid
 |-  ( Base ` P ) = ( Base ` P )
5 4 uprcl
 |-  ( <. X , M >. e. ( G ( O UP P ) W ) -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) )
6 3 5 syl
 |-  ( ph -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) )
7 6 simpld
 |-  ( ph -> G e. ( O Func P ) )