Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uprcl2a.x | |- ( ph -> X ( G ( O UP P ) W ) M ) |
|
| Assertion | uprcl2a | |- ( ph -> G e. ( O Func P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | |- ( ph -> X ( G ( O UP P ) W ) M ) |
|
| 2 | df-br | |- ( X ( G ( O UP P ) W ) M <-> <. X , M >. e. ( G ( O UP P ) W ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> <. X , M >. e. ( G ( O UP P ) W ) ) |
| 4 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 5 | 4 | uprcl | |- ( <. X , M >. e. ( G ( O UP P ) W ) -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) ) |
| 7 | 6 | simpld | |- ( ph -> G e. ( O Func P ) ) |