Metamath Proof Explorer


Theorem oppfuprcl

Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses uprcl2a.x
|- ( ph -> X ( G ( O UP P ) W ) M )
oppfuprcl.g
|- G = ( oppFunc ` F )
oppfuprcl.o
|- O = ( oppCat ` D )
oppfuprcl.p
|- P = ( oppCat ` E )
oppfuprcl.d
|- ( ph -> D e. U )
oppfuprcl.e
|- ( ph -> E e. V )
Assertion oppfuprcl
|- ( ph -> F e. ( D Func E ) )

Proof

Step Hyp Ref Expression
1 uprcl2a.x
 |-  ( ph -> X ( G ( O UP P ) W ) M )
2 oppfuprcl.g
 |-  G = ( oppFunc ` F )
3 oppfuprcl.o
 |-  O = ( oppCat ` D )
4 oppfuprcl.p
 |-  P = ( oppCat ` E )
5 oppfuprcl.d
 |-  ( ph -> D e. U )
6 oppfuprcl.e
 |-  ( ph -> E e. V )
7 1 uprcl2a
 |-  ( ph -> G e. ( O Func P ) )
8 2 7 eqeltrrid
 |-  ( ph -> ( oppFunc ` F ) e. ( O Func P ) )
9 3 4 5 6 8 funcoppc5
 |-  ( ph -> F e. ( D Func E ) )