Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2a.x | |- ( ph -> X ( G ( O UP P ) W ) M ) |
|
| oppfuprcl.g | |- G = ( oppFunc ` F ) |
||
| oppfuprcl.o | |- O = ( oppCat ` D ) |
||
| oppfuprcl.p | |- P = ( oppCat ` E ) |
||
| oppfuprcl.d | |- ( ph -> D e. U ) |
||
| oppfuprcl.e | |- ( ph -> E e. V ) |
||
| oppfuprcl2.f | |- ( ph -> F = <. A , B >. ) |
||
| Assertion | oppfuprcl2 | |- ( ph -> A ( D Func E ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | |- ( ph -> X ( G ( O UP P ) W ) M ) |
|
| 2 | oppfuprcl.g | |- G = ( oppFunc ` F ) |
|
| 3 | oppfuprcl.o | |- O = ( oppCat ` D ) |
|
| 4 | oppfuprcl.p | |- P = ( oppCat ` E ) |
|
| 5 | oppfuprcl.d | |- ( ph -> D e. U ) |
|
| 6 | oppfuprcl.e | |- ( ph -> E e. V ) |
|
| 7 | oppfuprcl2.f | |- ( ph -> F = <. A , B >. ) |
|
| 8 | 1 2 3 4 5 6 | oppfuprcl | |- ( ph -> F e. ( D Func E ) ) |
| 9 | 7 8 | eqeltrrd | |- ( ph -> <. A , B >. e. ( D Func E ) ) |
| 10 | df-br | |- ( A ( D Func E ) B <-> <. A , B >. e. ( D Func E ) ) |
|
| 11 | 9 10 | sylibr | |- ( ph -> A ( D Func E ) B ) |