Metamath Proof Explorer


Theorem oppfuprcl2

Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses uprcl2a.x
|- ( ph -> X ( G ( O UP P ) W ) M )
oppfuprcl.g
|- G = ( oppFunc ` F )
oppfuprcl.o
|- O = ( oppCat ` D )
oppfuprcl.p
|- P = ( oppCat ` E )
oppfuprcl.d
|- ( ph -> D e. U )
oppfuprcl.e
|- ( ph -> E e. V )
oppfuprcl2.f
|- ( ph -> F = <. A , B >. )
Assertion oppfuprcl2
|- ( ph -> A ( D Func E ) B )

Proof

Step Hyp Ref Expression
1 uprcl2a.x
 |-  ( ph -> X ( G ( O UP P ) W ) M )
2 oppfuprcl.g
 |-  G = ( oppFunc ` F )
3 oppfuprcl.o
 |-  O = ( oppCat ` D )
4 oppfuprcl.p
 |-  P = ( oppCat ` E )
5 oppfuprcl.d
 |-  ( ph -> D e. U )
6 oppfuprcl.e
 |-  ( ph -> E e. V )
7 oppfuprcl2.f
 |-  ( ph -> F = <. A , B >. )
8 1 2 3 4 5 6 oppfuprcl
 |-  ( ph -> F e. ( D Func E ) )
9 7 8 eqeltrrd
 |-  ( ph -> <. A , B >. e. ( D Func E ) )
10 df-br
 |-  ( A ( D Func E ) B <-> <. A , B >. e. ( D Func E ) )
11 9 10 sylibr
 |-  ( ph -> A ( D Func E ) B )