Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2a.x | ⊢ ( 𝜑 → 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| oppfuprcl.g | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | ||
| oppfuprcl.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | ||
| oppfuprcl.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| oppfuprcl.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| oppfuprcl.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) | ||
| oppfuprcl2.f | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | ||
| Assertion | oppfuprcl2 | ⊢ ( 𝜑 → 𝐴 ( 𝐷 Func 𝐸 ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | ⊢ ( 𝜑 → 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 2 | oppfuprcl.g | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | |
| 3 | oppfuprcl.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | |
| 4 | oppfuprcl.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 5 | oppfuprcl.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 6 | oppfuprcl.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) | |
| 7 | oppfuprcl2.f | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | |
| 8 | 1 2 3 4 5 6 | oppfuprcl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) |
| 9 | 7 8 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 10 | df-br | ⊢ ( 𝐴 ( 𝐷 Func 𝐸 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝜑 → 𝐴 ( 𝐷 Func 𝐸 ) 𝐵 ) |