Metamath Proof Explorer


Theorem oppfuprcl2

Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses uprcl2a.x ( 𝜑𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppfuprcl.g 𝐺 = ( oppFunc ‘ 𝐹 )
oppfuprcl.o 𝑂 = ( oppCat ‘ 𝐷 )
oppfuprcl.p 𝑃 = ( oppCat ‘ 𝐸 )
oppfuprcl.d ( 𝜑𝐷𝑈 )
oppfuprcl.e ( 𝜑𝐸𝑉 )
oppfuprcl2.f ( 𝜑𝐹 = ⟨ 𝐴 , 𝐵 ⟩ )
Assertion oppfuprcl2 ( 𝜑𝐴 ( 𝐷 Func 𝐸 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 uprcl2a.x ( 𝜑𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 oppfuprcl.g 𝐺 = ( oppFunc ‘ 𝐹 )
3 oppfuprcl.o 𝑂 = ( oppCat ‘ 𝐷 )
4 oppfuprcl.p 𝑃 = ( oppCat ‘ 𝐸 )
5 oppfuprcl.d ( 𝜑𝐷𝑈 )
6 oppfuprcl.e ( 𝜑𝐸𝑉 )
7 oppfuprcl2.f ( 𝜑𝐹 = ⟨ 𝐴 , 𝐵 ⟩ )
8 1 2 3 4 5 6 oppfuprcl ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
9 7 8 eqeltrrd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
10 df-br ( 𝐴 ( 𝐷 Func 𝐸 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
11 9 10 sylibr ( 𝜑𝐴 ( 𝐷 Func 𝐸 ) 𝐵 )