| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup3lem.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 2 |
|
oppcup3lem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 3 |
|
oppcup3lem.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ) |
| 4 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 5 |
4
|
reubidv |
⊢ ( 𝑛 = 𝑁 → ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) = ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐻 𝑋 ) = ( 𝑌 𝐻 𝑋 ) ) |
| 9 |
6
|
opeq1d |
⊢ ( 𝑦 = 𝑌 → 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 = 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝑦 = 𝑌 → ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) = ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝑦 = 𝑌 → 𝑀 = 𝑀 ) |
| 12 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐺 𝑋 ) = ( 𝑌 𝐺 𝑋 ) ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) |
| 14 |
10 11 13
|
oveq123d |
⊢ ( 𝑦 = 𝑌 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 16 |
8 15
|
reueqbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 17 |
7 16
|
raleqbidv |
⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 18 |
17 1 2
|
rspcdva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 19 |
5 18 3
|
rspcdva |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 23 |
22
|
cbvreuvw |
⊢ ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑚 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑚 = 𝑙 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑚 = 𝑙 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 26 |
25
|
eqeq2d |
⊢ ( 𝑚 = 𝑙 → ( 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) ) |
| 27 |
26
|
cbvreuvw |
⊢ ( ∃! 𝑚 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 28 |
23 27
|
bitri |
⊢ ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 29 |
19 28
|
sylib |
⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |