Metamath Proof Explorer


Theorem oppcup3

Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcup3.b 𝐵 = ( Base ‘ 𝐷 )
oppcup3.h 𝐻 = ( Hom ‘ 𝐷 )
oppcup3.j 𝐽 = ( Hom ‘ 𝐸 )
oppcup3.xb = ( comp ‘ 𝐸 )
oppcup3.o 𝑂 = ( oppCat ‘ 𝐷 )
oppcup3.p 𝑃 = ( oppCat ‘ 𝐸 )
oppcup3.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝑇 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppcup3.g ( 𝜑 → tpos 𝑇 = 𝐺 )
oppcup3.y ( 𝜑𝑌𝐵 )
oppcup3.n ( 𝜑𝑁 ∈ ( ( 𝐹𝑌 ) 𝐽 𝑊 ) )
Assertion oppcup3 ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( ⟨ ( 𝐹𝑌 ) , ( 𝐹𝑋 ) ⟩ 𝑊 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 oppcup3.b 𝐵 = ( Base ‘ 𝐷 )
2 oppcup3.h 𝐻 = ( Hom ‘ 𝐷 )
3 oppcup3.j 𝐽 = ( Hom ‘ 𝐸 )
4 oppcup3.xb = ( comp ‘ 𝐸 )
5 oppcup3.o 𝑂 = ( oppCat ‘ 𝐷 )
6 oppcup3.p 𝑃 = ( oppCat ‘ 𝐸 )
7 oppcup3.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝑇 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
8 oppcup3.g ( 𝜑 → tpos 𝑇 = 𝐺 )
9 oppcup3.y ( 𝜑𝑌𝐵 )
10 oppcup3.n ( 𝜑𝑁 ∈ ( ( 𝐹𝑌 ) 𝐽 𝑊 ) )
11 9 1 eleqtrdi ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
12 11 elfvexd ( 𝜑𝐷 ∈ V )
13 10 ne0d ( 𝜑 → ( ( 𝐹𝑌 ) 𝐽 𝑊 ) ≠ ∅ )
14 fvprc ( ¬ 𝐸 ∈ V → ( Hom ‘ 𝐸 ) = ∅ )
15 3 14 eqtrid ( ¬ 𝐸 ∈ V → 𝐽 = ∅ )
16 15 oveqd ( ¬ 𝐸 ∈ V → ( ( 𝐹𝑌 ) 𝐽 𝑊 ) = ( ( 𝐹𝑌 ) ∅ 𝑊 ) )
17 0ov ( ( 𝐹𝑌 ) ∅ 𝑊 ) = ∅
18 16 17 eqtrdi ( ¬ 𝐸 ∈ V → ( ( 𝐹𝑌 ) 𝐽 𝑊 ) = ∅ )
19 18 necon1ai ( ( ( 𝐹𝑌 ) 𝐽 𝑊 ) ≠ ∅ → 𝐸 ∈ V )
20 13 19 syl ( 𝜑𝐸 ∈ V )
21 7 6 5 12 20 8 oppcuprcl2 ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
22 7 8 uptpos ( 𝜑𝑋 ( ⟨ 𝐹 , tpos 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
23 1 2 3 4 5 6 21 22 oppcup2 ( 𝜑 → ∀ 𝑦𝐵𝑔 ∈ ( ( 𝐹𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( ⟨ ( 𝐹𝑦 ) , ( 𝐹𝑋 ) ⟩ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) )
24 23 9 10 oppcup3lem ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( ⟨ ( 𝐹𝑌 ) , ( 𝐹𝑋 ) ⟩ 𝑊 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) )