| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup3.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
oppcup3.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
oppcup3.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 4 |
|
oppcup3.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 5 |
|
oppcup3.o |
⊢ 𝑂 = ( oppCat ‘ 𝐷 ) |
| 6 |
|
oppcup3.p |
⊢ 𝑃 = ( oppCat ‘ 𝐸 ) |
| 7 |
|
oppcup3.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝑇 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) |
| 8 |
|
oppcup3.g |
⊢ ( 𝜑 → tpos 𝑇 = 𝐺 ) |
| 9 |
|
oppcup3.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
oppcup3.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ) |
| 11 |
9 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 12 |
11
|
elfvexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 13 |
10
|
ne0d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ≠ ∅ ) |
| 14 |
|
fvprc |
⊢ ( ¬ 𝐸 ∈ V → ( Hom ‘ 𝐸 ) = ∅ ) |
| 15 |
3 14
|
eqtrid |
⊢ ( ¬ 𝐸 ∈ V → 𝐽 = ∅ ) |
| 16 |
15
|
oveqd |
⊢ ( ¬ 𝐸 ∈ V → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) = ( ( 𝐹 ‘ 𝑌 ) ∅ 𝑊 ) ) |
| 17 |
|
0ov |
⊢ ( ( 𝐹 ‘ 𝑌 ) ∅ 𝑊 ) = ∅ |
| 18 |
16 17
|
eqtrdi |
⊢ ( ¬ 𝐸 ∈ V → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) = ∅ ) |
| 19 |
18
|
necon1ai |
⊢ ( ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ≠ ∅ → 𝐸 ∈ V ) |
| 20 |
13 19
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 21 |
7 6 5 12 20 8
|
oppcuprcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 22 |
7 8
|
uptpos |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) |
| 23 |
1 2 3 4 5 6 21 22
|
oppcup2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 24 |
23 9 10
|
oppcup3lem |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |