| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup3.b |
|- B = ( Base ` D ) |
| 2 |
|
oppcup3.h |
|- H = ( Hom ` D ) |
| 3 |
|
oppcup3.j |
|- J = ( Hom ` E ) |
| 4 |
|
oppcup3.xb |
|- .xb = ( comp ` E ) |
| 5 |
|
oppcup3.o |
|- O = ( oppCat ` D ) |
| 6 |
|
oppcup3.p |
|- P = ( oppCat ` E ) |
| 7 |
|
oppcup3.x |
|- ( ph -> X ( <. F , T >. ( O UP P ) W ) M ) |
| 8 |
|
oppcup3.g |
|- ( ph -> tpos T = G ) |
| 9 |
|
oppcup3.y |
|- ( ph -> Y e. B ) |
| 10 |
|
oppcup3.n |
|- ( ph -> N e. ( ( F ` Y ) J W ) ) |
| 11 |
9 1
|
eleqtrdi |
|- ( ph -> Y e. ( Base ` D ) ) |
| 12 |
11
|
elfvexd |
|- ( ph -> D e. _V ) |
| 13 |
10
|
ne0d |
|- ( ph -> ( ( F ` Y ) J W ) =/= (/) ) |
| 14 |
|
fvprc |
|- ( -. E e. _V -> ( Hom ` E ) = (/) ) |
| 15 |
3 14
|
eqtrid |
|- ( -. E e. _V -> J = (/) ) |
| 16 |
15
|
oveqd |
|- ( -. E e. _V -> ( ( F ` Y ) J W ) = ( ( F ` Y ) (/) W ) ) |
| 17 |
|
0ov |
|- ( ( F ` Y ) (/) W ) = (/) |
| 18 |
16 17
|
eqtrdi |
|- ( -. E e. _V -> ( ( F ` Y ) J W ) = (/) ) |
| 19 |
18
|
necon1ai |
|- ( ( ( F ` Y ) J W ) =/= (/) -> E e. _V ) |
| 20 |
13 19
|
syl |
|- ( ph -> E e. _V ) |
| 21 |
7 6 5 12 20 8
|
oppcuprcl2 |
|- ( ph -> F ( D Func E ) G ) |
| 22 |
7 8
|
uptpos |
|- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) |
| 23 |
1 2 3 4 5 6 21 22
|
oppcup2 |
|- ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| 24 |
23 9 10
|
oppcup3lem |
|- ( ph -> E! k e. ( Y H X ) N = ( M ( <. ( F ` Y ) , ( F ` X ) >. .xb W ) ( ( Y G X ) ` k ) ) ) |