Metamath Proof Explorer


Theorem oppcup3

Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcup3.b B = Base D
oppcup3.h H = Hom D
oppcup3.j J = Hom E
oppcup3.xb ˙ = comp E
oppcup3.o O = oppCat D
oppcup3.p P = oppCat E
oppcup3.x No typesetting found for |- ( ph -> X ( <. F , T >. ( O UP P ) W ) M ) with typecode |-
oppcup3.g φ tpos T = G
oppcup3.y φ Y B
oppcup3.n φ N F Y J W
Assertion oppcup3 φ ∃! k Y H X N = M F Y F X ˙ W Y G X k

Proof

Step Hyp Ref Expression
1 oppcup3.b B = Base D
2 oppcup3.h H = Hom D
3 oppcup3.j J = Hom E
4 oppcup3.xb ˙ = comp E
5 oppcup3.o O = oppCat D
6 oppcup3.p P = oppCat E
7 oppcup3.x Could not format ( ph -> X ( <. F , T >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , T >. ( O UP P ) W ) M ) with typecode |-
8 oppcup3.g φ tpos T = G
9 oppcup3.y φ Y B
10 oppcup3.n φ N F Y J W
11 9 1 eleqtrdi φ Y Base D
12 11 elfvexd φ D V
13 10 ne0d φ F Y J W
14 fvprc ¬ E V Hom E =
15 3 14 eqtrid ¬ E V J =
16 15 oveqd ¬ E V F Y J W = F Y W
17 0ov F Y W =
18 16 17 eqtrdi ¬ E V F Y J W =
19 18 necon1ai F Y J W E V
20 13 19 syl φ E V
21 7 6 5 12 20 8 oppcuprcl2 φ F D Func E G
22 7 8 uptpos Could not format ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) with typecode |-
23 1 2 3 4 5 6 21 22 oppcup2 φ y B g F y J W ∃! k y H X g = M F y F X ˙ W y G X k
24 23 9 10 oppcup3lem φ ∃! k Y H X N = M F Y F X ˙ W Y G X k