Metamath Proof Explorer


Theorem oppcup2

Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcup2.b B = Base D
oppcup2.h H = Hom D
oppcup2.j J = Hom E
oppcup2.xb ˙ = comp E
oppcup2.o O = oppCat D
oppcup2.p P = oppCat E
oppcup2.f φ F D Func E G
oppcup2.x No typesetting found for |- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) with typecode |-
Assertion oppcup2 φ y B g F y J W ∃! k y H X g = M F y F X ˙ W y G X k

Proof

Step Hyp Ref Expression
1 oppcup2.b B = Base D
2 oppcup2.h H = Hom D
3 oppcup2.j J = Hom E
4 oppcup2.xb ˙ = comp E
5 oppcup2.o O = oppCat D
6 oppcup2.p P = oppCat E
7 oppcup2.f φ F D Func E G
8 oppcup2.x Could not format ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) with typecode |-
9 eqid Base E = Base E
10 8 6 9 oppcuprcl3 φ W Base E
11 8 5 1 oppcuprcl4 φ X B
12 8 6 3 oppcuprcl5 φ M F X J W
13 1 9 2 3 4 10 7 11 12 5 6 oppcup Could not format ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) with typecode |-
14 8 13 mpbid φ y B g F y J W ∃! k y H X g = M F y F X ˙ W y G X k