| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup2.b |
|- B = ( Base ` D ) |
| 2 |
|
oppcup2.h |
|- H = ( Hom ` D ) |
| 3 |
|
oppcup2.j |
|- J = ( Hom ` E ) |
| 4 |
|
oppcup2.xb |
|- .xb = ( comp ` E ) |
| 5 |
|
oppcup2.o |
|- O = ( oppCat ` D ) |
| 6 |
|
oppcup2.p |
|- P = ( oppCat ` E ) |
| 7 |
|
oppcup2.f |
|- ( ph -> F ( D Func E ) G ) |
| 8 |
|
oppcup2.x |
|- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) |
| 9 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 10 |
8 6 9
|
oppcuprcl3 |
|- ( ph -> W e. ( Base ` E ) ) |
| 11 |
8 5 1
|
oppcuprcl4 |
|- ( ph -> X e. B ) |
| 12 |
8 6 3
|
oppcuprcl5 |
|- ( ph -> M e. ( ( F ` X ) J W ) ) |
| 13 |
1 9 2 3 4 10 7 11 12 5 6
|
oppcup |
|- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 14 |
8 13
|
mpbid |
|- ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |