Metamath Proof Explorer


Theorem oppcup2

Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcup2.b
|- B = ( Base ` D )
oppcup2.h
|- H = ( Hom ` D )
oppcup2.j
|- J = ( Hom ` E )
oppcup2.xb
|- .xb = ( comp ` E )
oppcup2.o
|- O = ( oppCat ` D )
oppcup2.p
|- P = ( oppCat ` E )
oppcup2.f
|- ( ph -> F ( D Func E ) G )
oppcup2.x
|- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M )
Assertion oppcup2
|- ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) )

Proof

Step Hyp Ref Expression
1 oppcup2.b
 |-  B = ( Base ` D )
2 oppcup2.h
 |-  H = ( Hom ` D )
3 oppcup2.j
 |-  J = ( Hom ` E )
4 oppcup2.xb
 |-  .xb = ( comp ` E )
5 oppcup2.o
 |-  O = ( oppCat ` D )
6 oppcup2.p
 |-  P = ( oppCat ` E )
7 oppcup2.f
 |-  ( ph -> F ( D Func E ) G )
8 oppcup2.x
 |-  ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M )
9 eqid
 |-  ( Base ` E ) = ( Base ` E )
10 8 6 9 oppcuprcl3
 |-  ( ph -> W e. ( Base ` E ) )
11 8 5 1 oppcuprcl4
 |-  ( ph -> X e. B )
12 8 6 3 oppcuprcl5
 |-  ( ph -> M e. ( ( F ` X ) J W ) )
13 1 9 2 3 4 10 7 11 12 5 6 oppcup
 |-  ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )
14 8 13 mpbid
 |-  ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) )