| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oppcup.b | 
							 |-  B = ( Base ` D )  | 
						
						
							| 2 | 
							
								
							 | 
							oppcup.c | 
							 |-  C = ( Base ` E )  | 
						
						
							| 3 | 
							
								
							 | 
							oppcup.h | 
							 |-  H = ( Hom ` D )  | 
						
						
							| 4 | 
							
								
							 | 
							oppcup.j | 
							 |-  J = ( Hom ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							oppcup.xb | 
							 |-  .xb = ( comp ` E )  | 
						
						
							| 6 | 
							
								
							 | 
							oppcup.w | 
							 |-  ( ph -> W e. C )  | 
						
						
							| 7 | 
							
								
							 | 
							oppcup.f | 
							 |-  ( ph -> F ( D Func E ) G )  | 
						
						
							| 8 | 
							
								
							 | 
							oppcup.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 9 | 
							
								
							 | 
							oppcup.m | 
							 |-  ( ph -> M e. ( ( F ` X ) J W ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oppcup.o | 
							 |-  O = ( oppCat ` D )  | 
						
						
							| 11 | 
							
								
							 | 
							oppcup.p | 
							 |-  P = ( oppCat ` E )  | 
						
						
							| 12 | 
							
								10 1
							 | 
							oppcbas | 
							 |-  B = ( Base ` O )  | 
						
						
							| 13 | 
							
								11 2
							 | 
							oppcbas | 
							 |-  C = ( Base ` P )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` O ) = ( Hom ` O )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` P ) = ( Hom ` P )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` P ) = ( comp ` P )  | 
						
						
							| 17 | 
							
								10 11 7
							 | 
							funcoppc | 
							 |-  ( ph -> F ( O Func P ) tpos G )  | 
						
						
							| 18 | 
							
								4 11
							 | 
							oppchom | 
							 |-  ( W ( Hom ` P ) ( F ` X ) ) = ( ( F ` X ) J W )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eleqtrrdi | 
							 |-  ( ph -> M e. ( W ( Hom ` P ) ( F ` X ) ) )  | 
						
						
							| 20 | 
							
								12 13 14 15 16 6 17 8 19
							 | 
							isup | 
							 |-  ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) ) )  | 
						
						
							| 21 | 
							
								4 11
							 | 
							oppchom | 
							 |-  ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. B ) -> ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W ) )  | 
						
						
							| 23 | 
							
								3 10
							 | 
							oppchom | 
							 |-  ( X ( Hom ` O ) y ) = ( y H X )  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. B ) -> ( X ( Hom ` O ) y ) = ( y H X ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ovtpos | 
							 |-  ( X tpos G y ) = ( y G X )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq1i | 
							 |-  ( ( X tpos G y ) ` k ) = ( ( y G X ) ` k )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq1i | 
							 |-  ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M )  | 
						
						
							| 28 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. B ) -> W e. C )  | 
						
						
							| 29 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. B ) -> F ( D Func E ) G )  | 
						
						
							| 30 | 
							
								1 2 29
							 | 
							funcf1 | 
							 |-  ( ( ph /\ y e. B ) -> F : B --> C )  | 
						
						
							| 31 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. B ) -> X e. B )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ y e. B ) -> ( F ` X ) e. C )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ y e. B ) -> y e. B )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ y e. B ) -> ( F ` y ) e. C )  | 
						
						
							| 35 | 
							
								2 5 11 28 32 34
							 | 
							oppcco | 
							 |-  ( ( ph /\ y e. B ) -> ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) )  | 
						
						
							| 36 | 
							
								27 35
							 | 
							eqtrid | 
							 |-  ( ( ph /\ y e. B ) -> ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq2d | 
							 |-  ( ( ph /\ y e. B ) -> ( g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )  | 
						
						
							| 38 | 
							
								24 37
							 | 
							reueqbidv | 
							 |-  ( ( ph /\ y e. B ) -> ( E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )  | 
						
						
							| 39 | 
							
								22 38
							 | 
							raleqbidv | 
							 |-  ( ( ph /\ y e. B ) -> ( A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralbidva | 
							 |-  ( ph -> ( A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )  | 
						
						
							| 41 | 
							
								20 40
							 | 
							bitrd | 
							 |-  ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) )  |