Metamath Proof Explorer


Theorem oppcup

Description: The universal pair <. X , M >. from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses oppcup.b B = Base D
oppcup.c C = Base E
oppcup.h H = Hom D
oppcup.j J = Hom E
oppcup.xb ˙ = comp E
oppcup.w φ W C
oppcup.f φ F D Func E G
oppcup.x φ X B
oppcup.m φ M F X J W
oppcup.o O = oppCat D
oppcup.p P = oppCat E
Assertion oppcup Could not format assertion : No typesetting found for |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppcup.b B = Base D
2 oppcup.c C = Base E
3 oppcup.h H = Hom D
4 oppcup.j J = Hom E
5 oppcup.xb ˙ = comp E
6 oppcup.w φ W C
7 oppcup.f φ F D Func E G
8 oppcup.x φ X B
9 oppcup.m φ M F X J W
10 oppcup.o O = oppCat D
11 oppcup.p P = oppCat E
12 10 1 oppcbas B = Base O
13 11 2 oppcbas C = Base P
14 eqid Hom O = Hom O
15 eqid Hom P = Hom P
16 eqid comp P = comp P
17 10 11 7 funcoppc φ F O Func P tpos G
18 4 11 oppchom W Hom P F X = F X J W
19 9 18 eleqtrrdi φ M W Hom P F X
20 12 13 14 15 16 6 17 8 19 isup Could not format ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) ) ) with typecode |-
21 4 11 oppchom W Hom P F y = F y J W
22 21 a1i φ y B W Hom P F y = F y J W
23 3 10 oppchom X Hom O y = y H X
24 23 a1i φ y B X Hom O y = y H X
25 ovtpos X tpos G y = y G X
26 25 fveq1i X tpos G y k = y G X k
27 26 oveq1i X tpos G y k W F X comp P F y M = y G X k W F X comp P F y M
28 6 adantr φ y B W C
29 7 adantr φ y B F D Func E G
30 1 2 29 funcf1 φ y B F : B C
31 8 adantr φ y B X B
32 30 31 ffvelcdmd φ y B F X C
33 simpr φ y B y B
34 30 33 ffvelcdmd φ y B F y C
35 2 5 11 28 32 34 oppcco φ y B y G X k W F X comp P F y M = M F y F X ˙ W y G X k
36 27 35 eqtrid φ y B X tpos G y k W F X comp P F y M = M F y F X ˙ W y G X k
37 36 eqeq2d φ y B g = X tpos G y k W F X comp P F y M g = M F y F X ˙ W y G X k
38 24 37 reueqbidv φ y B ∃! k X Hom O y g = X tpos G y k W F X comp P F y M ∃! k y H X g = M F y F X ˙ W y G X k
39 22 38 raleqbidv φ y B g W Hom P F y ∃! k X Hom O y g = X tpos G y k W F X comp P F y M g F y J W ∃! k y H X g = M F y F X ˙ W y G X k
40 39 ralbidva φ y B g W Hom P F y ∃! k X Hom O y g = X tpos G y k W F X comp P F y M y B g F y J W ∃! k y H X g = M F y F X ˙ W y G X k
41 20 40 bitrd Could not format ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) with typecode |-