Step |
Hyp |
Ref |
Expression |
1 |
|
oppcup.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
oppcup.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
oppcup.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
oppcup.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
oppcup.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
6 |
|
oppcup.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
7 |
|
oppcup.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
8 |
|
oppcup.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
oppcup.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |
10 |
|
oppcup.o |
⊢ 𝑂 = ( oppCat ‘ 𝐷 ) |
11 |
|
oppcup.p |
⊢ 𝑃 = ( oppCat ‘ 𝐸 ) |
12 |
10 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
13 |
11 2
|
oppcbas |
⊢ 𝐶 = ( Base ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
15 |
|
eqid |
⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) |
16 |
|
eqid |
⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) |
17 |
10 11 7
|
funcoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
18 |
4 11
|
oppchom |
⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) |
19 |
9 18
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) ) |
20 |
12 13 14 15 16 6 17 8 19
|
isup |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
21 |
4 11
|
oppchom |
⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) |
22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ) |
23 |
3 10
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) ) |
25 |
|
ovtpos |
⊢ ( 𝑋 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑋 ) |
26 |
25
|
fveq1i |
⊢ ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) |
27 |
26
|
oveq1i |
⊢ ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) |
28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ 𝐶 ) |
29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
30 |
1 2 29
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
32 |
30 31
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
34 |
30 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
35 |
2 5 11 28 32 34
|
oppcco |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
36 |
27 35
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
37 |
36
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
38 |
24 37
|
reueqbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
39 |
22 38
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
40 |
39
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
41 |
20 40
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |