| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oppcup.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							oppcup.c | 
							⊢ 𝐶  =  ( Base ‘ 𝐸 )  | 
						
						
							| 3 | 
							
								
							 | 
							oppcup.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							oppcup.j | 
							⊢ 𝐽  =  ( Hom  ‘ 𝐸 )  | 
						
						
							| 5 | 
							
								
							 | 
							oppcup.xb | 
							⊢  ∙   =  ( comp ‘ 𝐸 )  | 
						
						
							| 6 | 
							
								
							 | 
							oppcup.w | 
							⊢ ( 𝜑  →  𝑊  ∈  𝐶 )  | 
						
						
							| 7 | 
							
								
							 | 
							oppcup.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							oppcup.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							oppcup.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oppcup.o | 
							⊢ 𝑂  =  ( oppCat ‘ 𝐷 )  | 
						
						
							| 11 | 
							
								
							 | 
							oppcup.p | 
							⊢ 𝑃  =  ( oppCat ‘ 𝐸 )  | 
						
						
							| 12 | 
							
								10 1
							 | 
							oppcbas | 
							⊢ 𝐵  =  ( Base ‘ 𝑂 )  | 
						
						
							| 13 | 
							
								11 2
							 | 
							oppcbas | 
							⊢ 𝐶  =  ( Base ‘ 𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝑂 )  =  ( Hom  ‘ 𝑂 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝑃 )  =  ( Hom  ‘ 𝑃 )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝑃 )  =  ( comp ‘ 𝑃 )  | 
						
						
							| 17 | 
							
								10 11 7
							 | 
							funcoppc | 
							⊢ ( 𝜑  →  𝐹 ( 𝑂  Func  𝑃 ) tpos  𝐺 )  | 
						
						
							| 18 | 
							
								4 11
							 | 
							oppchom | 
							⊢ ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eleqtrrdi | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 20 | 
							
								12 13 14 15 16 6 17 8 19
							 | 
							isup | 
							⊢ ( 𝜑  →  ( 𝑋 ( 〈 𝐹 ,  tpos  𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘  ∈  ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 ) 𝑔  =  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) )  | 
						
						
							| 21 | 
							
								4 11
							 | 
							oppchom | 
							⊢ ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) )  | 
						
						
							| 23 | 
							
								3 10
							 | 
							oppchom | 
							⊢ ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 𝐻 𝑋 )  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 𝐻 𝑋 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ovtpos | 
							⊢ ( 𝑋 tpos  𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑋 )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq1i | 
							⊢ ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 )  =  ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq1i | 
							⊢ ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  =  ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  | 
						
						
							| 28 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑊  ∈  𝐶 )  | 
						
						
							| 29 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 )  | 
						
						
							| 30 | 
							
								1 2 29
							 | 
							funcf1 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐹 : 𝐵 ⟶ 𝐶 )  | 
						
						
							| 31 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐶 )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 )  | 
						
						
							| 35 | 
							
								2 5 11 28 32 34
							 | 
							oppcco | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) )  | 
						
						
							| 36 | 
							
								27 35
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑔  =  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  ↔  𝑔  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 38 | 
							
								24 37
							 | 
							reueqbidv | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ∃! 𝑘  ∈  ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 ) 𝑔  =  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  ↔  ∃! 𝑘  ∈  ( 𝑦 𝐻 𝑋 ) 𝑔  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 39 | 
							
								22 38
							 | 
							raleqbidv | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑔  ∈  ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘  ∈  ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 ) 𝑔  =  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  ↔  ∀ 𝑔  ∈  ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘  ∈  ( 𝑦 𝐻 𝑋 ) 𝑔  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralbidva | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑊 ( Hom  ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘  ∈  ( 𝑋 ( Hom  ‘ 𝑂 ) 𝑦 ) 𝑔  =  ( ( ( 𝑋 tpos  𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘  ∈  ( 𝑦 𝐻 𝑋 ) 𝑔  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 41 | 
							
								20 40
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝑋 ( 〈 𝐹 ,  tpos  𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘  ∈  ( 𝑦 𝐻 𝑋 ) 𝑔  =  ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑋 ) 〉  ∙  𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) )  |