| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
oppcup2.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
oppcup2.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 4 |
|
oppcup2.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 5 |
|
oppcup2.o |
⊢ 𝑂 = ( oppCat ‘ 𝐷 ) |
| 6 |
|
oppcup2.p |
⊢ 𝑃 = ( oppCat ‘ 𝐸 ) |
| 7 |
|
oppcup2.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 8 |
|
oppcup2.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 10 |
8 6 9
|
oppcuprcl3 |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
| 11 |
8 5 1
|
oppcuprcl4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 12 |
8 6 3
|
oppcuprcl5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |
| 13 |
1 9 2 3 4 10 7 11 12 5 6
|
oppcup |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |