Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| oppcuprcl2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| oppcuprcl5.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| Assertion | oppcuprcl5 | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 2 | oppcuprcl2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 3 | oppcuprcl5.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) | |
| 5 | 1 4 | uprcl5 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 6 | 3 2 | oppchom | ⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) |
| 7 | 5 6 | eleqtrdi | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |