Metamath Proof Explorer


Theorem oppcuprcl5

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
oppcuprcl5.j 𝐽 = ( Hom ‘ 𝐸 )
Assertion oppcuprcl5 ( 𝜑𝑀 ∈ ( ( 𝐹𝑋 ) 𝐽 𝑊 ) )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
3 oppcuprcl5.j 𝐽 = ( Hom ‘ 𝐸 )
4 eqid ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 )
5 1 4 uprcl5 ( 𝜑𝑀 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹𝑋 ) ) )
6 3 2 oppchom ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹𝑋 ) ) = ( ( 𝐹𝑋 ) 𝐽 𝑊 )
7 5 6 eleqtrdi ( 𝜑𝑀 ∈ ( ( 𝐹𝑋 ) 𝐽 𝑊 ) )