Metamath Proof Explorer


Theorem oppcuprcl5

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
oppcuprcl2.p P = oppCat E
oppcuprcl5.j J = Hom E
Assertion oppcuprcl5 φ M F X J W

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
2 oppcuprcl2.p P = oppCat E
3 oppcuprcl5.j J = Hom E
4 eqid Hom P = Hom P
5 1 4 uprcl5 φ M W Hom P F X
6 3 2 oppchom W Hom P F X = F X J W
7 5 6 eleqtrdi φ M F X J W