Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| oppcuprcl2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| oppcuprcl2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | ||
| oppcuprcl2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| oppcuprcl2.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) | ||
| oppcuprcl2.h | ⊢ ( 𝜑 → tpos 𝐺 = 𝐻 ) | ||
| Assertion | oppcuprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 2 | oppcuprcl2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 3 | oppcuprcl2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | |
| 4 | oppcuprcl2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 5 | oppcuprcl2.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) | |
| 6 | oppcuprcl2.h | ⊢ ( 𝜑 → tpos 𝐺 = 𝐻 ) | |
| 7 | 1 | uprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) 𝐺 ) |
| 8 | 3 2 4 5 7 | funcoppc2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) tpos 𝐺 ) |
| 9 | 8 6 | breqtrd | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐻 ) |