Metamath Proof Explorer


Theorem oppcuprcl2

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
oppcuprcl2.o 𝑂 = ( oppCat ‘ 𝐷 )
oppcuprcl2.d ( 𝜑𝐷𝑈 )
oppcuprcl2.e ( 𝜑𝐸𝑉 )
oppcuprcl2.h ( 𝜑 → tpos 𝐺 = 𝐻 )
Assertion oppcuprcl2 ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐻 )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 oppcuprcl2.p 𝑃 = ( oppCat ‘ 𝐸 )
3 oppcuprcl2.o 𝑂 = ( oppCat ‘ 𝐷 )
4 oppcuprcl2.d ( 𝜑𝐷𝑈 )
5 oppcuprcl2.e ( 𝜑𝐸𝑉 )
6 oppcuprcl2.h ( 𝜑 → tpos 𝐺 = 𝐻 )
7 1 uprcl2 ( 𝜑𝐹 ( 𝑂 Func 𝑃 ) 𝐺 )
8 3 2 4 5 7 funcoppc2 ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) tpos 𝐺 )
9 8 6 breqtrd ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐻 )