Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uprcl2a.x | ⊢ ( 𝜑 → 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| Assertion | uprcl2a | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑂 Func 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | ⊢ ( 𝜑 → 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 2 | df-br | ⊢ ( 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ 〈 𝑋 , 𝑀 〉 ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → 〈 𝑋 , 𝑀 〉 ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 5 | 4 | uprcl | ⊢ ( 〈 𝑋 , 𝑀 〉 ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) → ( 𝐺 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑊 ∈ ( Base ‘ 𝑃 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑊 ∈ ( Base ‘ 𝑃 ) ) ) |
| 7 | 6 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑂 Func 𝑃 ) ) |