Metamath Proof Explorer


Theorem uprcl2a

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypothesis uprcl2a.x ( 𝜑𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
Assertion uprcl2a ( 𝜑𝐺 ∈ ( 𝑂 Func 𝑃 ) )

Proof

Step Hyp Ref Expression
1 uprcl2a.x ( 𝜑𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 df-br ( 𝑋 ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ⟨ 𝑋 , 𝑀 ⟩ ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) )
3 1 2 sylib ( 𝜑 → ⟨ 𝑋 , 𝑀 ⟩ ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) )
4 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
5 4 uprcl ( ⟨ 𝑋 , 𝑀 ⟩ ∈ ( 𝐺 ( 𝑂 UP 𝑃 ) 𝑊 ) → ( 𝐺 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑊 ∈ ( Base ‘ 𝑃 ) ) )
6 3 5 syl ( 𝜑 → ( 𝐺 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑊 ∈ ( Base ‘ 𝑃 ) ) )
7 6 simpld ( 𝜑𝐺 ∈ ( 𝑂 Func 𝑃 ) )