| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
funcoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
funcoppc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
1 4
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 7 |
2 6
|
oppcbas |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝑃 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) |
| 11 |
|
eqid |
⊢ ( Id ‘ 𝑃 ) = ( Id ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) |
| 13 |
|
eqid |
⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) |
| 14 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 15 |
3 14
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 18 |
17
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 19 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 21 |
2
|
oppccat |
⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 22 |
17 21
|
simpl2im |
⊢ ( 𝜑 → 𝑃 ∈ Cat ) |
| 23 |
4 6 3
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 24 |
4 3
|
funcfn2 |
⊢ ( 𝜑 → 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 25 |
|
tposfn |
⊢ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → tpos 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → tpos 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 27 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 28 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 30 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 31 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 32 |
4 27 28 29 30 31
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
| 34 |
33
|
feq1i |
⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 |
27 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 36 |
28 2
|
oppchom |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) |
| 37 |
35 36
|
feq23i |
⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 |
34 37
|
bitri |
⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
32 38
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 40 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 41 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 44 |
4 40 41 42 43
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑥 ) = ( 𝑥 𝐺 𝑥 ) |
| 46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 tpos 𝐺 𝑥 ) = ( 𝑥 𝐺 𝑥 ) ) |
| 47 |
1 40
|
oppcid |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 48 |
18 47
|
syl |
⊢ ( 𝜑 → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 50 |
49
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 51 |
46 50
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 tpos 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
| 52 |
2 41
|
oppcid |
⊢ ( 𝐷 ∈ Cat → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 53 |
17 52
|
simpl2im |
⊢ ( 𝜑 → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 55 |
54
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑃 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 56 |
44 51 55
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 tpos 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑃 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 57 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 58 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 59 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 60 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 61 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 62 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 63 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
| 64 |
27 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 65 |
63 64
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 66 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 67 |
66 35
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 68 |
4 27 57 58 59 60 61 62 65 67
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ) ) |
| 69 |
4 57 1 62 61 60
|
oppcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 70 |
69
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 71 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 72 |
71 62
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 73 |
71 61
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 74 |
71 60
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 75 |
6 58 2 72 73 74
|
oppcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ) ) |
| 76 |
68 70 75
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) ) |
| 77 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑧 ) = ( 𝑧 𝐺 𝑥 ) |
| 78 |
77
|
fveq1i |
⊢ ( ( 𝑥 tpos 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 79 |
|
ovtpos |
⊢ ( 𝑦 tpos 𝐺 𝑧 ) = ( 𝑧 𝐺 𝑦 ) |
| 80 |
79
|
fveq1i |
⊢ ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) = ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) |
| 81 |
33
|
fveq1i |
⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) = ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) |
| 82 |
80 81
|
oveq12i |
⊢ ( ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) |
| 83 |
76 78 82
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑥 tpos 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 84 |
5 7 8 9 10 11 12 13 20 22 23 26 39 56 83
|
isfuncd |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |