| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
|- O = ( oppCat ` C ) |
| 2 |
|
funcoppc2.p |
|- P = ( oppCat ` D ) |
| 3 |
|
funcoppc2.c |
|- ( ph -> C e. V ) |
| 4 |
|
funcoppc2.d |
|- ( ph -> D e. W ) |
| 5 |
|
funcoppc5.f |
|- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |
| 6 |
|
relfunc |
|- Rel ( O Func P ) |
| 7 |
|
eqid |
|- ( oppFunc ` F ) = ( oppFunc ` F ) |
| 8 |
5 6 7
|
oppfrcl |
|- ( ph -> F e. ( _V X. _V ) ) |
| 9 |
|
1st2nd2 |
|- ( F e. ( _V X. _V ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 10 |
8 9
|
syl |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 12 |
|
df-ov |
|- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 13 |
11 12
|
eqtr4di |
|- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) |
| 14 |
13 5
|
eqeltrrd |
|- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) |
| 15 |
1 2 3 4 14
|
funcoppc4 |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 16 |
|
df-br |
|- ( ( 1st ` F ) ( C Func D ) ( 2nd ` F ) <-> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) ) |
| 17 |
15 16
|
sylib |
|- ( ph -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) ) |
| 18 |
10 17
|
eqeltrd |
|- ( ph -> F e. ( C Func D ) ) |