Metamath Proof Explorer


Theorem funcoppc5

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o
|- O = ( oppCat ` C )
funcoppc2.p
|- P = ( oppCat ` D )
funcoppc2.c
|- ( ph -> C e. V )
funcoppc2.d
|- ( ph -> D e. W )
funcoppc5.f
|- ( ph -> ( oppFunc ` F ) e. ( O Func P ) )
Assertion funcoppc5
|- ( ph -> F e. ( C Func D ) )

Proof

Step Hyp Ref Expression
1 funcoppc2.o
 |-  O = ( oppCat ` C )
2 funcoppc2.p
 |-  P = ( oppCat ` D )
3 funcoppc2.c
 |-  ( ph -> C e. V )
4 funcoppc2.d
 |-  ( ph -> D e. W )
5 funcoppc5.f
 |-  ( ph -> ( oppFunc ` F ) e. ( O Func P ) )
6 relfunc
 |-  Rel ( O Func P )
7 eqid
 |-  ( oppFunc ` F ) = ( oppFunc ` F )
8 5 6 7 oppfrcl
 |-  ( ph -> F e. ( _V X. _V ) )
9 1st2nd2
 |-  ( F e. ( _V X. _V ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )
10 8 9 syl
 |-  ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )
11 10 fveq2d
 |-  ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) )
12 df-ov
 |-  ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. )
13 11 12 eqtr4di
 |-  ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) )
14 13 5 eqeltrrd
 |-  ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) )
15 1 2 3 4 14 funcoppc4
 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
16 df-br
 |-  ( ( 1st ` F ) ( C Func D ) ( 2nd ` F ) <-> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) )
17 15 16 sylib
 |-  ( ph -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) )
18 10 17 eqeltrd
 |-  ( ph -> F e. ( C Func D ) )