| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
funcoppc2.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
funcoppc2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
funcoppc2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
|
funcoppc5.f |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 6 |
|
relfunc |
⊢ Rel ( 𝑂 Func 𝑃 ) |
| 7 |
|
eqid |
⊢ ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 𝐹 ) |
| 8 |
5 6 7
|
oppfrcl |
⊢ ( 𝜑 → 𝐹 ∈ ( V × V ) ) |
| 9 |
|
1st2nd2 |
⊢ ( 𝐹 ∈ ( V × V ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 12 |
|
df-ov |
⊢ ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 13 |
11 12
|
eqtr4di |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ) |
| 14 |
13 5
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 15 |
1 2 3 4 14
|
funcoppc4 |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 16 |
|
df-br |
⊢ ( ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ↔ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 18 |
10 17
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |