Metamath Proof Explorer


Theorem funcoppc5

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
funcoppc2.c ( 𝜑𝐶𝑉 )
funcoppc2.d ( 𝜑𝐷𝑊 )
funcoppc5.f ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) )
Assertion funcoppc5 ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
2 funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
3 funcoppc2.c ( 𝜑𝐶𝑉 )
4 funcoppc2.d ( 𝜑𝐷𝑊 )
5 funcoppc5.f ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) )
6 relfunc Rel ( 𝑂 Func 𝑃 )
7 eqid ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 𝐹 )
8 5 6 7 oppfrcl ( 𝜑𝐹 ∈ ( V × V ) )
9 1st2nd2 ( 𝐹 ∈ ( V × V ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
10 8 9 syl ( 𝜑𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
11 10 fveq2d ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
12 df-ov ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) = ( oppFunc ‘ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
13 11 12 eqtr4di ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) )
14 13 5 eqeltrrd ( 𝜑 → ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) )
15 1 2 3 4 14 funcoppc4 ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
16 df-br ( ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) ↔ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ∈ ( 𝐶 Func 𝐷 ) )
17 15 16 sylib ( 𝜑 → ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ∈ ( 𝐶 Func 𝐷 ) )
18 10 17 eqeltrd ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )