| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
funcoppc2.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
funcoppc2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
funcoppc2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
|
funcoppc4.f |
⊢ ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 6 |
5
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝑂 Func 𝑃 ) ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) ) |
| 7 |
1 2 3 4 6
|
funcoppc2 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝐶 Func 𝐷 ) tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) ) |
| 8 |
|
relfunc |
⊢ Rel ( 𝑂 Func 𝑃 ) |
| 9 |
|
df-ov |
⊢ ( 𝐹 oppFunc 𝐺 ) = ( oppFunc ‘ 〈 𝐹 , 𝐺 〉 ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 𝐹 , 𝐺 〉 ) |
| 11 |
5 8 9 10
|
oppf1st2nd |
⊢ ( 𝜑 → ( ( 𝐹 oppFunc 𝐺 ) ∈ ( V × V ) ∧ ( ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 ∧ ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 ) ) ) |
| 12 |
11
|
simprld |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 ) |
| 13 |
11
|
simprrd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 ) |
| 14 |
13
|
tposeqd |
⊢ ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos tpos 𝐺 ) |
| 15 |
5 8 9 10
|
oppfrcl3 |
⊢ ( 𝜑 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 16 |
|
tpostpos2 |
⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 18 |
14 17
|
eqtrd |
⊢ ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐺 ) |
| 19 |
7 12 18
|
3brtr3d |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |