Metamath Proof Explorer


Theorem funcoppc4

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
funcoppc2.c ( 𝜑𝐶𝑉 )
funcoppc2.d ( 𝜑𝐷𝑊 )
funcoppc4.f ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) )
Assertion funcoppc4 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
2 funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
3 funcoppc2.c ( 𝜑𝐶𝑉 )
4 funcoppc2.d ( 𝜑𝐷𝑊 )
5 funcoppc4.f ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) )
6 5 func1st2nd ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝑂 Func 𝑃 ) ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) )
7 1 2 3 4 6 funcoppc2 ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝐶 Func 𝐷 ) tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) )
8 relfunc Rel ( 𝑂 Func 𝑃 )
9 df-ov ( 𝐹 oppFunc 𝐺 ) = ( oppFunc ‘ ⟨ 𝐹 , 𝐺 ⟩ )
10 eqidd ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ = ⟨ 𝐹 , 𝐺 ⟩ )
11 5 8 9 10 oppf1st2nd ( 𝜑 → ( ( 𝐹 oppFunc 𝐺 ) ∈ ( V × V ) ∧ ( ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 ∧ ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 ) ) )
12 11 simprld ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 )
13 11 simprrd ( 𝜑 → ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 )
14 13 tposeqd ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos tpos 𝐺 )
15 5 8 9 10 oppfrcl3 ( 𝜑 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) )
16 tpostpos2 ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 )
17 15 16 syl ( 𝜑 → tpos tpos 𝐺 = 𝐺 )
18 14 17 eqtrd ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐺 )
19 7 12 18 3brtr3d ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )