| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
|- O = ( oppCat ` C ) |
| 2 |
|
funcoppc2.p |
|- P = ( oppCat ` D ) |
| 3 |
|
funcoppc2.c |
|- ( ph -> C e. V ) |
| 4 |
|
funcoppc2.d |
|- ( ph -> D e. W ) |
| 5 |
|
funcoppc4.f |
|- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) |
| 6 |
5
|
func1st2nd |
|- ( ph -> ( 1st ` ( F oppFunc G ) ) ( O Func P ) ( 2nd ` ( F oppFunc G ) ) ) |
| 7 |
1 2 3 4 6
|
funcoppc2 |
|- ( ph -> ( 1st ` ( F oppFunc G ) ) ( C Func D ) tpos ( 2nd ` ( F oppFunc G ) ) ) |
| 8 |
|
relfunc |
|- Rel ( O Func P ) |
| 9 |
|
df-ov |
|- ( F oppFunc G ) = ( oppFunc ` <. F , G >. ) |
| 10 |
|
eqidd |
|- ( ph -> <. F , G >. = <. F , G >. ) |
| 11 |
5 8 9 10
|
oppf1st2nd |
|- ( ph -> ( ( F oppFunc G ) e. ( _V X. _V ) /\ ( ( 1st ` ( F oppFunc G ) ) = F /\ ( 2nd ` ( F oppFunc G ) ) = tpos G ) ) ) |
| 12 |
11
|
simprld |
|- ( ph -> ( 1st ` ( F oppFunc G ) ) = F ) |
| 13 |
11
|
simprrd |
|- ( ph -> ( 2nd ` ( F oppFunc G ) ) = tpos G ) |
| 14 |
13
|
tposeqd |
|- ( ph -> tpos ( 2nd ` ( F oppFunc G ) ) = tpos tpos G ) |
| 15 |
5 8 9 10
|
oppfrcl3 |
|- ( ph -> ( Rel G /\ Rel dom G ) ) |
| 16 |
|
tpostpos2 |
|- ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G ) |
| 17 |
15 16
|
syl |
|- ( ph -> tpos tpos G = G ) |
| 18 |
14 17
|
eqtrd |
|- ( ph -> tpos ( 2nd ` ( F oppFunc G ) ) = G ) |
| 19 |
7 12 18
|
3brtr3d |
|- ( ph -> F ( C Func D ) G ) |