Metamath Proof Explorer


Theorem oppfrcl3

Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1
|- ( ph -> G e. R )
oppfrcl.2
|- Rel R
oppfrcl.3
|- G = ( oppFunc ` F )
oppfrcl2.4
|- ( ph -> F = <. A , B >. )
Assertion oppfrcl3
|- ( ph -> ( Rel B /\ Rel dom B ) )

Proof

Step Hyp Ref Expression
1 oppfrcl.1
 |-  ( ph -> G e. R )
2 oppfrcl.2
 |-  Rel R
3 oppfrcl.3
 |-  G = ( oppFunc ` F )
4 oppfrcl2.4
 |-  ( ph -> F = <. A , B >. )
5 4 fveq2d
 |-  ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) )
6 df-ov
 |-  ( A oppFunc B ) = ( oppFunc ` <. A , B >. )
7 5 3 6 3eqtr4g
 |-  ( ph -> G = ( A oppFunc B ) )
8 1 2 3 4 oppfrcl2
 |-  ( ph -> ( A e. _V /\ B e. _V ) )
9 oppfvalg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) )
10 8 9 syl
 |-  ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) )
11 7 10 eqtrd
 |-  ( ph -> G = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) )
12 1 2 oppfrcllem
 |-  ( ph -> G =/= (/) )
13 11 12 eqnetrrd
 |-  ( ph -> if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) =/= (/) )
14 iffalse
 |-  ( -. ( Rel B /\ Rel dom B ) -> if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) = (/) )
15 14 necon1ai
 |-  ( if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) =/= (/) -> ( Rel B /\ Rel dom B ) )
16 13 15 syl
 |-  ( ph -> ( Rel B /\ Rel dom B ) )