| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfrcl.1 |
|- ( ph -> G e. R ) |
| 2 |
|
oppfrcl.2 |
|- Rel R |
| 3 |
|
oppfrcl.3 |
|- G = ( oppFunc ` F ) |
| 4 |
|
oppfrcl2.4 |
|- ( ph -> F = <. A , B >. ) |
| 5 |
4
|
fveq2d |
|- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) ) |
| 6 |
|
df-ov |
|- ( A oppFunc B ) = ( oppFunc ` <. A , B >. ) |
| 7 |
5 3 6
|
3eqtr4g |
|- ( ph -> G = ( A oppFunc B ) ) |
| 8 |
1 2 3 4
|
oppfrcl2 |
|- ( ph -> ( A e. _V /\ B e. _V ) ) |
| 9 |
|
oppfvalg |
|- ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) |
| 11 |
7 10
|
eqtrd |
|- ( ph -> G = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) |
| 12 |
1 2
|
oppfrcllem |
|- ( ph -> G =/= (/) ) |
| 13 |
11 12
|
eqnetrrd |
|- ( ph -> if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) =/= (/) ) |
| 14 |
|
iffalse |
|- ( -. ( Rel B /\ Rel dom B ) -> if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) = (/) ) |
| 15 |
14
|
necon1ai |
|- ( if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) =/= (/) -> ( Rel B /\ Rel dom B ) ) |
| 16 |
13 15
|
syl |
|- ( ph -> ( Rel B /\ Rel dom B ) ) |