| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfrcl.1 |
|- ( ph -> G e. R ) |
| 2 |
|
oppfrcl.2 |
|- Rel R |
| 3 |
|
oppfrcl.3 |
|- G = ( oppFunc ` F ) |
| 4 |
|
oppfrcl2.4 |
|- ( ph -> F = <. A , B >. ) |
| 5 |
1 2 3
|
oppfrcl |
|- ( ph -> F e. ( _V X. _V ) ) |
| 6 |
4 5
|
eqeltrrd |
|- ( ph -> <. A , B >. e. ( _V X. _V ) ) |
| 7 |
|
0nelxp |
|- -. (/) e. ( _V X. _V ) |
| 8 |
|
nelne2 |
|- ( ( <. A , B >. e. ( _V X. _V ) /\ -. (/) e. ( _V X. _V ) ) -> <. A , B >. =/= (/) ) |
| 9 |
6 7 8
|
sylancl |
|- ( ph -> <. A , B >. =/= (/) ) |
| 10 |
|
opprc |
|- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
| 11 |
10
|
necon1ai |
|- ( <. A , B >. =/= (/) -> ( A e. _V /\ B e. _V ) ) |
| 12 |
9 11
|
syl |
|- ( ph -> ( A e. _V /\ B e. _V ) ) |