Metamath Proof Explorer


Theorem 0nelxp

Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by JJ, 13-Aug-2021)

Ref Expression
Assertion 0nelxp
|- -. (/) e. ( A X. B )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 vex
 |-  y e. _V
3 1 2 opnzi
 |-  <. x , y >. =/= (/)
4 3 nesymi
 |-  -. (/) = <. x , y >.
5 4 intnanr
 |-  -. ( (/) = <. x , y >. /\ ( x e. A /\ y e. B ) )
6 5 nex
 |-  -. E. y ( (/) = <. x , y >. /\ ( x e. A /\ y e. B ) )
7 6 nex
 |-  -. E. x E. y ( (/) = <. x , y >. /\ ( x e. A /\ y e. B ) )
8 elxp
 |-  ( (/) e. ( A X. B ) <-> E. x E. y ( (/) = <. x , y >. /\ ( x e. A /\ y e. B ) ) )
9 7 8 mtbir
 |-  -. (/) e. ( A X. B )