Metamath Proof Explorer


Theorem oppfrcl

Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1
|- ( ph -> G e. R )
oppfrcl.2
|- Rel R
oppfrcl.3
|- G = ( oppFunc ` F )
Assertion oppfrcl
|- ( ph -> F e. ( _V X. _V ) )

Proof

Step Hyp Ref Expression
1 oppfrcl.1
 |-  ( ph -> G e. R )
2 oppfrcl.2
 |-  Rel R
3 oppfrcl.3
 |-  G = ( oppFunc ` F )
4 1 2 oppfrcllem
 |-  ( ph -> G =/= (/) )
5 ndmfv
 |-  ( -. F e. dom oppFunc -> ( oppFunc ` F ) = (/) )
6 3 5 eqtrid
 |-  ( -. F e. dom oppFunc -> G = (/) )
7 6 necon1ai
 |-  ( G =/= (/) -> F e. dom oppFunc )
8 4 7 syl
 |-  ( ph -> F e. dom oppFunc )
9 df-oppf
 |-  oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) )
10 opex
 |-  <. f , tpos g >. e. _V
11 0ex
 |-  (/) e. _V
12 10 11 ifex
 |-  if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) e. _V
13 9 12 dmmpo
 |-  dom oppFunc = ( _V X. _V )
14 8 13 eleqtrdi
 |-  ( ph -> F e. ( _V X. _V ) )