Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | |- ( ph -> G e. R ) |
|
| oppfrcl.2 | |- Rel R |
||
| oppfrcl.3 | |- G = ( oppFunc ` F ) |
||
| Assertion | oppfrcl | |- ( ph -> F e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | |- ( ph -> G e. R ) |
|
| 2 | oppfrcl.2 | |- Rel R |
|
| 3 | oppfrcl.3 | |- G = ( oppFunc ` F ) |
|
| 4 | 1 2 | oppfrcllem | |- ( ph -> G =/= (/) ) |
| 5 | ndmfv | |- ( -. F e. dom oppFunc -> ( oppFunc ` F ) = (/) ) |
|
| 6 | 3 5 | eqtrid | |- ( -. F e. dom oppFunc -> G = (/) ) |
| 7 | 6 | necon1ai | |- ( G =/= (/) -> F e. dom oppFunc ) |
| 8 | 4 7 | syl | |- ( ph -> F e. dom oppFunc ) |
| 9 | oppffn | |- oppFunc Fn ( _V X. _V ) |
|
| 10 | 9 | fndmi | |- dom oppFunc = ( _V X. _V ) |
| 11 | 8 10 | eleqtrdi | |- ( ph -> F e. ( _V X. _V ) ) |