Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| oppfrcl.2 | ⊢ Rel 𝑅 | ||
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | ||
| Assertion | oppfrcl | ⊢ ( 𝜑 → 𝐹 ∈ ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| 2 | oppfrcl.2 | ⊢ Rel 𝑅 | |
| 3 | oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | |
| 4 | 1 2 | oppfrcllem | ⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
| 5 | ndmfv | ⊢ ( ¬ 𝐹 ∈ dom oppFunc → ( oppFunc ‘ 𝐹 ) = ∅ ) | |
| 6 | 3 5 | eqtrid | ⊢ ( ¬ 𝐹 ∈ dom oppFunc → 𝐺 = ∅ ) |
| 7 | 6 | necon1ai | ⊢ ( 𝐺 ≠ ∅ → 𝐹 ∈ dom oppFunc ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝐹 ∈ dom oppFunc ) |
| 9 | oppffn | ⊢ oppFunc Fn ( V × V ) | |
| 10 | 9 | fndmi | ⊢ dom oppFunc = ( V × V ) |
| 11 | 8 10 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( V × V ) ) |