Metamath Proof Explorer


Theorem oppffn

Description: oppFunc is a function on (V X. V ) . (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Assertion oppffn oppFunc Fn ( V × V )

Proof

Step Hyp Ref Expression
1 df-oppf oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , ⟨ 𝑓 , tpos 𝑔 ⟩ , ∅ ) )
2 opex 𝑓 , tpos 𝑔 ⟩ ∈ V
3 0ex ∅ ∈ V
4 2 3 ifex if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , ⟨ 𝑓 , tpos 𝑔 ⟩ , ∅ ) ∈ V
5 1 4 fnmpoi oppFunc Fn ( V × V )