Description: oppFunc is a function on (V X. V ) . (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppffn | ⊢ oppFunc Fn ( V × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppf | ⊢ oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ) | |
| 2 | opex | ⊢ 〈 𝑓 , tpos 𝑔 〉 ∈ V | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 2 3 | ifex | ⊢ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ∈ V |
| 5 | 1 4 | fnmpoi | ⊢ oppFunc Fn ( V × V ) |