Metamath Proof Explorer


Theorem reldmoppf

Description: The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion reldmoppf Rel dom oppFunc

Proof

Step Hyp Ref Expression
1 df-oppf oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , ⟨ 𝑓 , tpos 𝑔 ⟩ , ∅ ) )
2 1 reldmmpo Rel dom oppFunc