| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
| 2 |
1
|
releqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( Rel 𝑔 ↔ Rel 𝐺 ) ) |
| 3 |
1
|
dmeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → dom 𝑔 = dom 𝐺 ) |
| 4 |
3
|
releqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( Rel dom 𝑔 ↔ Rel dom 𝐺 ) ) |
| 5 |
2 4
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) ↔ ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
| 7 |
1
|
tposeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → tpos 𝑔 = tpos 𝐺 ) |
| 8 |
6 7
|
opeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 〈 𝑓 , tpos 𝑔 〉 = 〈 𝐹 , tpos 𝐺 〉 ) |
| 9 |
5 8
|
ifbieq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 10 |
|
df-oppf |
⊢ oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ) |
| 11 |
|
opex |
⊢ 〈 𝐹 , tpos 𝐺 〉 ∈ V |
| 12 |
|
0ex |
⊢ ∅ ∈ V |
| 13 |
11 12
|
ifex |
⊢ if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ∈ V |
| 14 |
9 10 13
|
ovmpoa |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |