Metamath Proof Explorer


Theorem oppfvalg

Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion oppfvalg Could not format assertion : No typesetting found for |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simpr f = F g = G g = G
2 1 releqd f = F g = G Rel g Rel G
3 1 dmeqd f = F g = G dom g = dom G
4 3 releqd f = F g = G Rel dom g Rel dom G
5 2 4 anbi12d f = F g = G Rel g Rel dom g Rel G Rel dom G
6 simpl f = F g = G f = F
7 1 tposeqd f = F g = G tpos g = tpos G
8 6 7 opeq12d f = F g = G f tpos g = F tpos G
9 5 8 ifbieq1d f = F g = G if Rel g Rel dom g f tpos g = if Rel G Rel dom G F tpos G
10 df-oppf Could not format oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) : No typesetting found for |- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) with typecode |-
11 opex F tpos G V
12 0ex V
13 11 12 ifex if Rel G Rel dom G F tpos G V
14 9 10 13 ovmpoa Could not format ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) : No typesetting found for |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-