Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
releqd
Next ⟩
nfrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
releqd
Description:
Equality deduction for the relation predicate.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Hypothesis
releqd.1
⊢
φ
→
A
=
B
Assertion
releqd
⊢
φ
→
Rel
⁡
A
↔
Rel
⁡
B
Proof
Step
Hyp
Ref
Expression
1
releqd.1
⊢
φ
→
A
=
B
2
releq
⊢
A
=
B
→
Rel
⁡
A
↔
Rel
⁡
B
3
1
2
syl
⊢
φ
→
Rel
⁡
A
↔
Rel
⁡
B