Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | releqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | releqd | ⊢ ( 𝜑 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | releq | ⊢ ( 𝐴 = 𝐵 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |