Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Opposite functors
oppfrcllem
Next ⟩
oppfrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppfrcllem
Description:
Lemma for
oppfrcl
.
(Contributed by
Zhi Wang
, 14-Nov-2025)
Ref
Expression
Hypotheses
oppfrcl.1
⊢
φ
→
G
∈
R
oppfrcl.2
⊢
Rel
⁡
R
Assertion
oppfrcllem
⊢
φ
→
G
≠
∅
Proof
Step
Hyp
Ref
Expression
1
oppfrcl.1
⊢
φ
→
G
∈
R
2
oppfrcl.2
⊢
Rel
⁡
R
3
0nelrel0
⊢
Rel
⁡
R
→
¬
∅
∈
R
4
2
3
ax-mp
⊢
¬
∅
∈
R
5
nelne2
⊢
G
∈
R
∧
¬
∅
∈
R
→
G
≠
∅
6
1
4
5
sylancl
⊢
φ
→
G
≠
∅