Metamath Proof Explorer


Theorem oppfrcllem

Description: Lemma for oppfrcl . (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1 ( 𝜑𝐺𝑅 )
oppfrcl.2 Rel 𝑅
Assertion oppfrcllem ( 𝜑𝐺 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 oppfrcl.1 ( 𝜑𝐺𝑅 )
2 oppfrcl.2 Rel 𝑅
3 0nelrel0 ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 )
4 2 3 ax-mp ¬ ∅ ∈ 𝑅
5 nelne2 ( ( 𝐺𝑅 ∧ ¬ ∅ ∈ 𝑅 ) → 𝐺 ≠ ∅ )
6 1 4 5 sylancl ( 𝜑𝐺 ≠ ∅ )