Metamath Proof Explorer
Description: Lemma for oppfrcl . (Contributed by Zhi Wang, 14-Nov-2025)
|
|
Ref |
Expression |
|
Hypotheses |
oppfrcl.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) |
|
|
oppfrcl.2 |
⊢ Rel 𝑅 |
|
Assertion |
oppfrcllem |
⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfrcl.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) |
| 2 |
|
oppfrcl.2 |
⊢ Rel 𝑅 |
| 3 |
|
0nelrel0 |
⊢ ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 ) |
| 4 |
2 3
|
ax-mp |
⊢ ¬ ∅ ∈ 𝑅 |
| 5 |
|
nelne2 |
⊢ ( ( 𝐺 ∈ 𝑅 ∧ ¬ ∅ ∈ 𝑅 ) → 𝐺 ≠ ∅ ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |