Metamath Proof Explorer


Theorem 0nelrel0

Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021) (Revised by BJ, 14-Jul-2023)

Ref Expression
Assertion 0nelrel0 RelR¬R

Proof

Step Hyp Ref Expression
1 df-rel RelRRV×V
2 1 biimpi RelRRV×V
3 0nelxp ¬V×V
4 3 a1i RelR¬V×V
5 2 4 ssneldd RelR¬R