Metamath Proof Explorer


Theorem oppffn

Description: oppFunc is a function on (V X. V ) . (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Assertion oppffn Could not format assertion : No typesetting found for |- oppFunc Fn ( _V X. _V ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-oppf Could not format oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) : No typesetting found for |- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) with typecode |-
2 opex f tpos g V
3 0ex V
4 2 3 ifex if Rel g Rel dom g f tpos g V
5 1 4 fnmpoi Could not format oppFunc Fn ( _V X. _V ) : No typesetting found for |- oppFunc Fn ( _V X. _V ) with typecode |-